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Course Overview

1   Electronic structure of atoms
• Introduction
• Hydrogenic atoms
• Multi-electron atoms
• Ground vs. excited states

4 Hückel theory
• Constructing a Hückel matrix
• Molecular orbitals
• Benzene anion
• Electrophilic and nucleophilic 

attack
2 Electronic structure of 
molecules
• Molecular orbitals
• Molecular electronic structure
• Energy hierarchy

5 Spin Hamiltonians
• A “how-to” guide
• Matrix elements
• Example: S = 1/2
• Example: S = 1

3 Matrix mechanics
• Vector (Hilbert) spaces
• Bra-ket notation
• Operators and expectation values
• Matrix diagonalisation

6   Workshop



Intended learning objectives
1. Construct approximate wave functions for single and multi-electron 

atoms

2. Explain the energy hierarchy of multi-electron atoms

3. Differentiate the concepts of ground and excited electronic states, 
including spin and orbital states

4. Mathematically expand and visualise the spatial wave functions of 
atoms and simple molecules as a linear combination of MOs and basis 
functions

5. Mathematically describe the connection between matrix 
diagonalisation and solution to the Schrödinger equation

6. Construct a Hückel Hamiltonian matrix

7. Employ Bra-Ket notation to evaluate the matrix elements of a simple 
spin Hamiltonian



• What is the goal of computational chemistry?
– Chemistry is all about electrons
– We want to know where they spend their time
– This governs reactivity and physical properties

• Uses fundamental equations of nature and computational 
techniques to solve chemical problems

Introduction to computational chemistry

Molecular structure Electronic structure



• What can you calculate with computational chemistry?
– Electronic structure
– Molecular geometry
– Vibrational modes
– Excited states
– Reaction barriers
– Transition states
– Molecular dynamics
– Magnetic properties
– NMR spectra

– …and much more!

Introduction to computational chemistry



• Why is computational chemistry useful?
– Help explain experimental results

• “What vibrational mode gives that IR peak?”

– Quick test before trying experiment
• “Will this drug bind to this protein?”

– Do chemistry that is too expensive or dangerous
• “How does radioactive waste react with steel?”
• “Which explosive will have a bigger boom?”

– Do experiments that cannot be performed in reality
• “Where do the electrons move first in this reaction?”

Introduction to computational chemistry



• How does computational chemistry work?
1. Take molecular structure (guess or from X-Ray structure)
2. Guess molecular orbitals
3. Calculate electronic structure
4. Refine molecular orbitals
5. Refine molecular structure (optional)
6. Calculate electronic structure
7. Is solution consistent?

• The central theory? Schrödinger’s wave equation:

• Hamiltonian operator measures the energy of the wavefunction

Introduction to computational chemistry
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• Let’s start with a simple problem you know already: hydrogen
– One nucleus, one electron, spherical symmetry
– Ignore the nuclear wavefunction: the nucleus is very heavy 

compared to the electron; basically, it doesn’t move!

• Electronic Schrödinger Hamiltonian in spherical coordinates 
(you’ve seen this is CHEM10212 last year!):

• Can manipulate to have individual terms for 𝑟, 𝜃 and 𝜙:
𝜳 is separable!

Hydrogenic atoms
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• Can manipulate to have individual terms for 𝑟, 𝜃 and 𝜙:
𝜳 is separable!

– 𝑅!,# 𝑟 is the radial function for quantum numbers 𝑛 and 𝑙

– 𝑌#,$!
𝜃, 𝜙 are the spherical harmonics (angular function)

– 𝜓 is the spatial single electron wavefunction

Hydrogenic atoms
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Ψ = 𝜓!,#,$! 𝑟, 𝜃, 𝜙 = 𝑅!,# 𝑟 𝑌#,$! 𝜃, 𝜙

FEED FORWARD:
Don’t forget n = 1,2,…; l = 0 – n-1; ml = -l – l



• But what about the electron spin?

– Can have two possible values: 𝑚% = ± &
'

– Purely quantum mechanical (not actually spinning)
no classical analogue, but can be measured

• Therefore, need to add spin function:

– The electron spin coordinate is 𝑠(, which is the projection
of the electron spin on the z-axis, and can only take the 
values 𝑠( = ± &

' (in units of ℏ)

– The spin function 𝜎$" 𝑠( = 𝛿$",%# where 𝛿$",%# is the 
Kronecker delta: 𝛿$",%# = 1 if 𝑚% = 𝑠( and 0 if 𝑚% ≠ 𝑠(

– 𝜒 is the single electron spinorbital

Hydrogenic atoms

𝜒!,#,$!,$" 𝑟, 𝜃, 𝜙, 𝑠( = 𝜓!,#,$! 𝑟, 𝜃, 𝜙 𝜎$" 𝑠(

FEED FORWARD:
ms is QN of the 
spinorbital
sz is spin coordinate 
of electron
Purely book-keeping



Electron spin
• The experiment that shows the quantised spin magnetic 

moment of the electron:
1. Vaporise silver in an oven, shoot atoms towards a screen
2. Apply magnetic field in path of atoms
3. Magnetic particles will be deflected
4. Silver has one unpaired electron: [Kr]4d105s1

Oven

Ag

Classical spin: continuous 
distribution

Oven

Ag

Quantum spin: discrete 
distribution



Electron spin

http://www.toutestquantique.fr



• Solving the radial equation is non-trivial and is not covered here 
(but there is an exact solution for single electron atoms)

• The energy of the different wavefunction solutions leads to the 
Rydberg formula 𝐸! ≈ − )*$

!$ where 𝑅 ≈ 13.6 eV (note there is 
no dependence on 𝑙; i.e. 𝐸'% = 𝐸'+ = 𝐸')

Hydrogenic atoms

What do negative energies mean?

What is the electron configuration of 
hydrogen?

How many states are there for 𝑛 = 1?

How many states are there for 𝑛 = 2?
𝐸! ≈ −13.6 eV

𝐸" ≈ −3.4 eV

𝐸# ≈ −1.5 eV

Hydrogen energies

E



• Helium: one nucleus, two electrons – surely it’s not that hard?
• Hamiltonian:

• This term cannot be separated into an ‘𝑟&’ part and an ‘𝑟'’ part
– No exact solution!
– Must use approximations!

Multi-electron atoms
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• Assume each electron only interacts
with the average position of the other:
atom is spherically symmetric, so the
other electron looks like a spherical
cloud of negative charge

• Hamiltonian (nucleus ‘screened’ by other electrons, 𝐶):

• This is called mean field theory, and can be generalised for 
molecular calculations (see Hartree-Fock theory)

Multi-electron atoms
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• Without the troublesome term, the equation is now separable
– solutions are known as the Hartree product:

– 𝑥, ≡ 𝑟,, 𝜃,, 𝜙,, 𝑠(, and 𝜅, ≡ 𝑛,, 𝑙,, 𝑚#,, 𝑚%,

• However, this does not obey the Pauli antisymmetry 
(exclusion) principle: “The wavefunction must be anti-
symmetric under the exchange of electrons”. Mathematically:

Multi-electron atoms
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Ψ 𝑥&, 𝑥' = −Ψ 𝑥', 𝑥& Let’s see this fail by hand…



• To satisfy Pauli, we need a combination
of Hartree products where coordinates are switched:

• General solution known as a Slater determinant:

– Columns have same spinorbital, rows have same coordinates
– If two columns are identical, the determinant is zero.
– Thus, antisymmetry enforces the Pauli exclusion principle!

Multi-electron atoms
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• With more than one electron, orbital energies depend on 𝑙
– This is why 1s fills first, followed by 2s, followed by 2p, etc.

• Atoms also have high electronic degeneracy
– e.g. carbon atom 1s22s22p2:

Multi-electron atoms

Which orbital do we draw as empty?

This option is called orbital degeneracy

What is the ground state degeneracy?1𝑠

2𝑠

2𝑝

E

FEED FORWARD:
E2s = E2p for H
E2s < E2p for He!



Multi-electron atoms
• What is the ground state degeneracy?

15 states!



Multi-electron atoms
• But are all 15 states actually the same energy?

– No! Electrons repel each other! &
1⃑%21⃑$

– Configurations are spit into terms (CHEM10101)
– Terms are classified by 𝑆 = ∑,𝑚%, and 𝐿 = ∑,𝑚#, and 

written as 89:;𝐿 (𝐿 in spectroscopic notation, S, P, D, etc.)

𝑚! = +1 𝑚! = 0 𝑚! = −1

𝑚! = +1 𝑚! = 0 𝑚! = −1

𝑆 = &
'+

&
' = 1, 𝐿 = 1 + 0 = 1

Must have 3𝑃 term! Degeneracy = 3×3 = 9

𝑆 = &
'−

&
' = 0, 𝐿 = 1 + 1 = 2

Must have &𝐷 term! Degeneracy = 1×5 = 5

One state missing: must have &𝑆 term! Degeneracy = 1×1 = 1

2𝑆 + 1 2𝐿 + 1



• First two configurations of carbon:
• Ground state term given by Hund’s

rules (CHEM10101, CHEM10312)

• Note that orbital energy diagrams
are only one part of the story

• Usually only think about ground state,
but don’t forget the excited states exist!

Multi-electron atoms

1s22s22p2

1s22s12p3

3P

1D

1S

5S

3D

3P

E


