CHEM20212

Computational Chemistry II: Fundamentals of electronic structure theory

2 Electronic structure of molecules

Nick Chilton G.012 Dover St Building T: 54584 E: nicholas.chilton@manchester.ac.uk

The University of Manchester

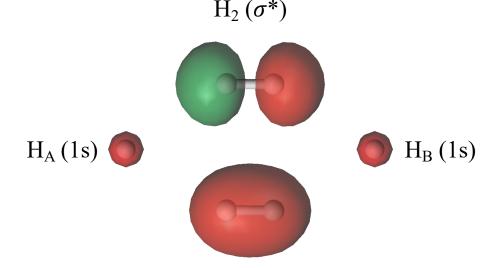
Course Overview

 Electronic structure of atoms Introduction Hydrogenic atoms Multi-electron atoms Ground <i>vs.</i> excited states 	 4 Hückel theory Constructing a Hückel matrix Molecular orbitals Benzene anion Electrophilic and nucleophilic attack
 2 Electronic structure of molecules Molecular orbitals Molecular electronic structure Energy hierarchy 	 5 Spin Hamiltonians A "how-to" guide Matrix elements Example: S = 1/2 Example: S = 1
 3 Matrix mechanics Vector (Hilbert) spaces Bra-ket notation Operators and expectation values Matrix diagonalisation 	6 Workshop

Intended learning objectives

- 1. Construct approximate wave functions for single and multi-electron atoms
- 2. Explain the energy hierarchy of multi-electron atoms
- 3. Differentiate the concepts of ground and excited electronic states, including spin and orbital states
- 4. Mathematically expand and visualise the spatial wave functions of atoms and simple molecules as a linear combination of MOs and basis functions
- 5. Mathematically describe the connection between matrix diagonalisation and solution to the Schrödinger equation
- 6. Construct a Hückel Hamiltonian matrix
- 7. Employ Bra-Ket notation to evaluate the matrix elements of a simple spin Hamiltonian

- What about molecular wavefunctions? [Ignore spin for now]
 - We construct spatial molecular orbitals (MOs) from a linear combination of spatial atomic orbitals (LCAO)



• Mathematically: $\begin{aligned} & H_{2}(\sigma) \\ & \psi_{1s,\sigma}[\vec{r}] = \frac{1}{\sqrt{2}} \left(\psi_{1s_{A}}[\vec{r} - \overrightarrow{R_{A}}] + \psi_{1s_{B}}[\vec{r} - \overrightarrow{R_{B}}] \right) \\ & \psi_{1s,\sigma^{*}}[\vec{r}] = \frac{1}{\sqrt{2}} \left(\psi_{1s_{A}}[\vec{r} - \overrightarrow{R_{A}}] - \psi_{1s_{B}}[\vec{r} - \overrightarrow{R_{B}}] \right) \end{aligned}$

• In general, *MOs are sums over all AOs* (the set of AOs is called the *basis set*):

$$\psi_{a}[\vec{r}] = \sum_{b} C_{a,b} \,\psi_{b}(\vec{r} - \overrightarrow{R_{b}})$$

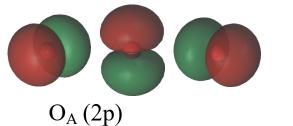
– Note: same number of MOs as AOs!

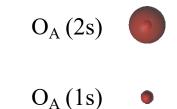
• For the H₂ example:

$$\psi_{1s,\sigma}[\vec{r}] = \frac{1}{\sqrt{2}} \left(\psi_{1s_A}[\vec{r} - \overrightarrow{R_A}] + \psi_{1s_B}[\vec{r} - \overrightarrow{R_B}] \right)$$
$$\psi_{1s,\sigma^*}[\vec{r}] = \frac{1}{\sqrt{2}} \left(\psi_{1s_A}[\vec{r} - \overrightarrow{R_A}] - \psi_{1s_B}[\vec{r} - \overrightarrow{R_B}] \right)$$

$$C_{\sigma,1s(A)} = +\frac{1}{\sqrt{2}} \qquad C_{\sigma,1s(B)} = +\frac{1}{\sqrt{2}} C_{\sigma^*,1s(A)} = +\frac{1}{\sqrt{2}} \qquad C_{\sigma^*,1s(B)} = -\frac{1}{\sqrt{2}}$$

• How about O₂:

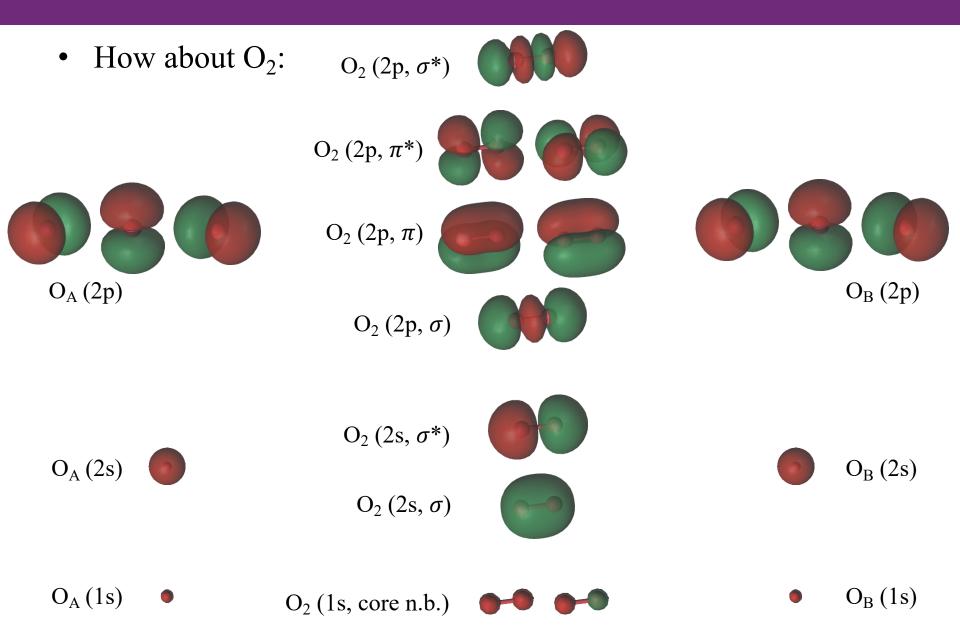




 $\psi_{2p,-1}[r,\theta,\phi] = R_{2p}[r]Y_{1,-1}[\theta,\phi]$ $\psi_{2p,0}[r,\theta,\phi] = R_{2p}[r]Y_{1,0}[\theta,\phi]$ $\psi_{2p,+1}[r,\theta,\phi] = R_{2p}[r]Y_{1,+1}[\theta,\phi]$

 $\psi_{2p_{x}}[r,\theta,\phi] = R_{2p}[r]x = R_{2p}[r]r\sin\theta\cos\phi$ $\psi_{2p_{y}}[r,\theta,\phi] = R_{2p}[r]y = R_{2p}[r]r\sin\theta\sin\phi$ $\psi_{2p_{x}}[r,\theta,\phi] = R_{2p}[r]z = R_{2p}[r]r\cos\theta$

 $\psi_{2s}[r,\theta,\phi] = R_{2s}[r]$ $\psi_{1s}[r,\theta,\phi] = R_{1s}[r]$



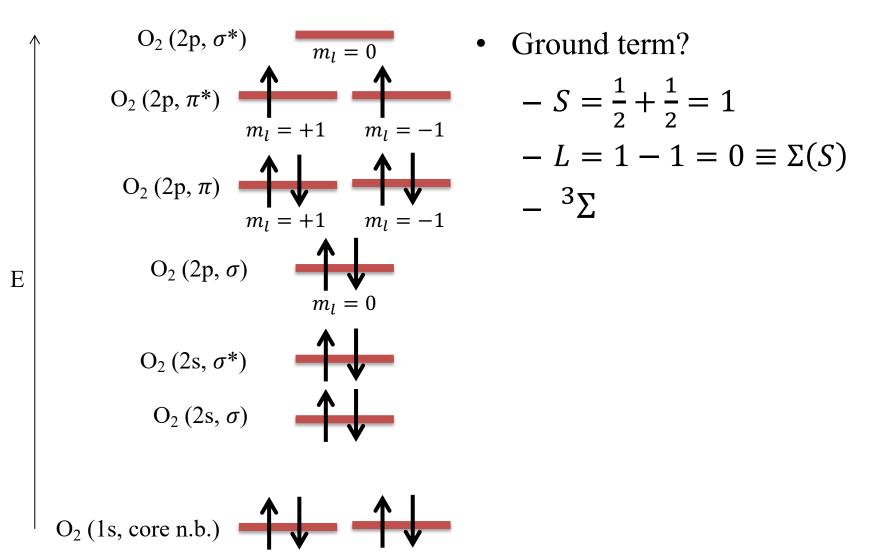
- Let's sketch one of the $2p \pi^*$ MOs:
 - Atoms $O_{\rm A}$ and $O_{\rm B}$ lie on the x-axis
 - **–** MO is:

$$\psi_{2p,\pi^*}[\vec{r}] = \frac{1}{\sqrt{2}} \left(\psi_{2p_{ZA}}[\vec{r} - \overrightarrow{R_A}] - \psi_{2p_{ZB}}[\vec{r} - \overrightarrow{R_B}] \right)$$
AOs:

$$\psi_{2p_{z_A}}\left[\vec{r} - \overrightarrow{R_A}\right] = R_{2p}[r - R_A](z - z_A)$$

Molecular electronic structure

• What about electronic states?



Molecular electronic structure

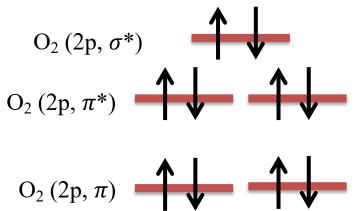
- A Slater determinant represents a given set of quantum numbers $(\chi_{m_l,m_s} \text{ notation})$: need multiple determinants to describe $O_2!$
- Ground state of O_2 (π^* electrons only):

Wavefunction methods

- Hartree-Fock(-Roothan) method:
 - Mean-field theory
 - Single determinant, all electrons paired
 - LCAO method for MOs
 - Good approximation for closed-shell organic molecules
- Main problems of Hartree-Fock?
 - We haven't *actually included* the $\frac{1}{|\vec{r_1} \vec{r_2}|}$ term, so the electrons don't interact with each other correctly
 - This is called a lack of *dynamic correlation*
 - Can be approximated with perturbation theory (*i.e.* MP2) or through other methods (*i.e.* coupled-cluster or DFT)
 - Can't model open-shell molecules (lack of *static correlation*)

Wavefunction methods

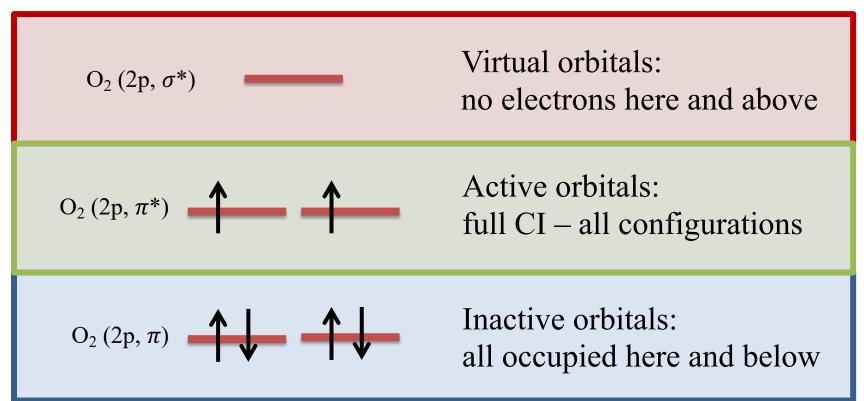
- Open shell molecules require multiple determinants
 - Hartree-Fock method not applicable!
 - Wavefunction is a linear combination of Slater determinants
 - *Full configuration interaction* (all electrons can be in all orbitals) approaches the exact non-relativistic solution when combined with an infinite basis set



Unfortunately, it's very expensive! Usually, the number of configurations is restricted

Wavefunction methods

- The *complete active space* method is a common approach
 - Treats most electrons with Hartree-Fock and only some electrons and orbitals with configuration interaction
 - Allows treatment of excited states



Energy Hierarchy

- Just like atoms, molecules have many electronic states
 - But they also have vibrational and rotational quantum states!
- For O₂: $(\pi^*)^1(\sigma^*)^1$ 1Σ E $(\pi^*)^2$ 1Δ 3Σ J = 2J = 1v = 2v = 1J = 0 $\mathbf{v} = \mathbf{0}$ Vibrational Configuration Rotational Term