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Course Overview

1 Electronic structure of atoms 4 Hiickel theory

* Introduction * Constructing a Hiickel matrix

* Hydrogenic atoms * Molecular orbitals

* Multi-electron atoms * Benzene anion

* Ground vs. excited states * Electrophilic and nucleophilic
attack

2 Electronic structure of 5 Spin Hamiltonians

molecules * A “how-to” guide

* Molecular orbitals * Matrix elements

* Molecular electronic structure  Example: §=1/2

* Energy hierarchy * Example: §=1

3 Matrix mechanics 6 Workshop

* Vector (Hilbert) spaces

* Bra-ket notation

* Operators and expectation values

e Matrix diagonalisation




Intended learning objectives

Construct approximate wave functions for single and multi-electron
atoms

Explain the energy hierarchy of multi-electron atoms

Differentiate the concepts of ground and excited electronic states,
including spin and orbital states

Mathematically expand and visualise the spatial wave functions of
atoms and simple molecules as a linear combination of MOs and basis
functions

Mathematically describe the connection between matrix
diagonalisation and solution to the Schrodinger equation

Construct a Huckel Hamiltonian matrix

Employ Bra-Ket notation to evaluate the matrix elements of a simple
spin Hamiltonian




Matrix mechanics

* Solving the Schrodinger equation 1s crucial to solve our
problems...

* ... but how do we actually do 1t when there’s no analytic
solution?

* We use the techniques of matrix mechanics, developed by
Werner Heisenberg



Vector spaces

* You know vectors in Euclidian space:
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Vector spaces

* (Can also express vectors 1n matrix notation:
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e Also works in the 3D basis:
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Vector spaces

* The x, y and z vectors are the basis vectors of 3D space

— Any vector in 3D space can be expressed with x, y and z

* This is possible because they are three orthogonal vectors 1n a
three dimensional space

— Orthogonal 1s defined to mean the dot product 1s zero:
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Dot product in matrix notation:
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Bra-ket notation

* Dirac got sick of using matrix/vector(/integral) notation all the
time, so invented a new notation:

1 0 0 ‘Ket’
X = [0] =|x), y = H =ly), z= [0] = Iz)/
0 0 1

* The dot product in bra-ket notation (a.k.a. inner product):

‘Bra’

[
x) = (x|, -9 =(x|ly)=0
T ‘Bra-ket’




Hilbert spaces

This concept can be generalised to arbitrary dimension:
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These basis vectors define the space; they are all orthogonal

and normalised:

(qlq) =1,{qlw) =0

These are known as Hilbert spaces. Generally, vectors 1n these
spaces can have complex coefficients, so the bra 1s actually the

conjugate transpose:
(al = )" = (l)") =la)"

FEED FORWARD:

Make sure you can conjugate!




Hilbert spaces

(a|b) =
= (8 —-12){qlw) + (2 —-3i)(1 —i){q|r) — 24(r|w) — (6 + 6i)(r|r)

* Example:

61y = O Practice normalising and
|a) q) + —6|r) = O checking orthogonality

— O -

2+ 311| FEED FORWARD:

. 6

Note conjugation! b)Y =4|lw)+ (1 —=10)|r) =

— Are |a)) and |b) orthogonal?
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Operators and expectation values

Operators 1n quantum mechanics represent measurements

W[x] is delocalised; probability density given by W[x]*W[x]
(Born 1nterpretation)

To compare with experiment we must integrate over all spatial
and spin coordinates coordinates:

=]WALP

— (/T) is called the expectation value of operator A

The Hamiltonian 1s an operator that measures the total energy

(E) = f F:



Operators and expectation values

* So, we need to do a lot of integrals with our wavefunctions;
can Bra-Ket notation make things simpler?

* Let’s take a pair of spatial MOs, constructed from two AOs:

Wi[F]| = C;i 11 [7]|+ Ci,zlpz[F]_
W [F]|= Cp f1 [Tl + Cy p 2 [7]
|

MOs

AOs

* A simple integral might be:

j Wi [F]" Wy [Fldr = J{Ci,ﬂ/h[?] + Ci,sz[F]}{Ck,llpl[F] + Ck,zlpz[f)]}d?

r



Operators and expectation values

* Expanding:

j (Coatn A + Coata D {Cunths [F] + Cropho[71)dF

j[ Ci 1)1 [FICk 101 [T] + Ci 11 [F]Cy 215 [7] ]d?
+Ci 2o [F1Ck 101 [F] + Ci 202 [F1Cy 2105 [F]

= j Ci,llpl[F]Ck,llpl[F]d77+j Ci,llpl[F]Ck,zl,bz[F]df

r r

+j Ci,zlpz[F]Ck,ﬂ/h[F]d?_”)"‘j Ci 202 [F1Cy 21, [F]dT

r r



Operators and expectation values

* Assuming that our
basis functions (AOs) ¢1 Pld7 =1 j =0
are orthonormal. /

= Ci1 CrAl | V1[7T1[7ldT Ci,1*Ck,2y Y1 [r],[Fld7

+Ci,2*Ck,1|J o [Pl [Fld7 Ci,z*Ck,zv Yo [Pl [Fldr

_ __ : 1 [Cra
= Ci1Cr1 + Ci2Cr2 = [Ci1 Ci2 [Ck 2] = Wilr)

* Generally, the combination of a bra and ket implies an integral
over all space (and spin)!



Solving the Schrodinger equation

* So, wavefunctions can be expressed as vectors 1n a finite basis:

_Ci’l_

C.
ﬁ’z = |¥))

Cin.

* The Schrodinger equation in this notation:

H|¥;) = E;|¥;)

* This looks just like a matrix-vector equation:
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Solving the Schrodinger equation

* Solving the Schrodinger equation is therefore equivalent to
finding the coefficients such that:

'H1,1 H1,2 H1,N‘ 'Ci,1' 'Ci,1'

Hy; Hy, -+ Hyn|]|Ci2 — Cio
: P 2 N

Hy1 Hyp - HynlLCGp. Ci N

* Hg,p are the matrix elements of the Hamiltonian matrix H,

found by evaluating the Hamiltonian operator over all basis
states:

Hap = (al o) = | BalFID 7147

* The Schrodinger equation 1s an eigenvalue equation, and the
solution can be found by diagonalising the Hamiltonian
matrix



FEED FORWARD: Hamiltonians

 The Hamiltonian operator H acts on a state/ket/wavefunction
to yield a number and either the same or a different
state/ket/wavefunction

 The Hamiltonian matrix H is formed by evaluating all the
matrix elements H, , = (a|ﬁ |b) which involve the
Hamiltonian operator acting on the ket |b) and then evaluation
with the bra {(a|
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Solving the Schrodinger equation

* Diagonalisation of a matrix 1s finding the matrix P such that

P=1AP = D, where D is a diagonal matrix:

E; 0 - 07
p=|,
0 0 - Ey

e The columns of P are the C11) | C21 | - | Cna
eigenvectors (wavefunctions), p— Ci2||Co2| =+ | Cn2

and the diagonal elements of D Tl : " :
are the eigenvalues (energies) Cin| | Con| = | Cynd
W) [[W2)] - | |¥n)

* Can be done by hand for 2x2, but usually we use computers!



Matrix diagonalisation

* Every operator, including the Hamiltonian, must correspond to
a physical measurement

— Therefore, all expectation values and eigenvalues
must be real numbers

e For this to be true, the Hamiltonian matrix must be hermitian

— This means that it is equal to its conjugate transpose:
-
— Because of this, the eigenvectors of the Hamiltonian are all

orthogonal to each other! (But not to the original basis
vectors)

— Therefore, the eigenvectors are also a basis for the Hilbert
space! They define the eigenbasis!



Matrix diagonalisation

* Let’s consider a simple 2D example:

— Basis states:

o) = o] lv2) =[]

— Hamiltonian matrix: ﬁ _ [a b

* Diagonalisation gives:
— Eigenvectors:

— Eigenvalues:

b a

|1/J1> — \/E ) 1/’2) = \/21
N BN

Ei=a+bE,=a—-b>b




Matrix diagonalisation

* Plot the eigenvectors in our orthogonal 2D basis:

Y1) =

) =

— 1 -

Tz

V2
1

1)

1 1

1) = ﬁh’l) +ﬁ|‘72>
1 1
[¥2) = ﬁh’l) —ﬁh’z}

Eigenvectors are orthogonal!
Eigenbasis is just rotated!

Diagonalisation is a rotation
in the Hilbert space!




