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Course Overview

1   Electronic structure of atoms
• Introduction
• Hydrogenic atoms
• Multi-electron atoms
• Ground vs. excited states

4 Hückel theory
• Constructing a Hückel matrix
• Molecular orbitals
• Benzene anion
• Electrophilic and nucleophilic 

attack
2 Electronic structure of 
molecules
• Molecular orbitals
• Molecular electronic structure
• Energy hierarchy

5 Spin Hamiltonians
• A “how-to” guide
• Matrix elements
• Example: S = 1/2
• Example: S = 1

3 Matrix mechanics
• Vector (Hilbert) spaces
• Bra-ket notation
• Operators and expectation values
• Matrix diagonalisation

6   Workshop



Intended learning objectives
1. Construct approximate wave functions for single and multi-electron 

atoms

2. Explain the energy hierarchy of multi-electron atoms

3. Differentiate the concepts of ground and excited electronic states, 
including spin and orbital states

4. Mathematically expand and visualise the spatial wave functions of 
atoms and simple molecules as a linear combination of MOs and basis 
functions

5. Mathematically describe the connection between matrix 
diagonalisation and solution to the Schrödinger equation

6. Construct a Hückel Hamiltonian matrix

7. Employ Bra-Ket notation to evaluate the matrix elements of a simple 
spin Hamiltonian



• Solving the Schrödinger equation is crucial to solve our 
problems…

• … but how do we actually do it when there’s no analytic 
solution?

• We use the techniques of matrix mechanics, developed by 
Werner Heisenberg

Matrix mechanics



• You know vectors in Euclidian space:
– 2D:

– 3D:

Vector spaces

�⃗�

�⃗�

�⃗� = 3�⃗� + 1�⃗�

�⃗�

�⃗�

𝑏 = 2�⃗� + 2�⃗� + 3𝑧

𝑧



• Can also express vectors in matrix notation:

• Also works in the 3D basis:

• General vector:

Vector spaces

�⃗� ≡ 1
0 , �⃗� ≡ 0
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0 + 1 0
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=
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𝐶"
𝐶#



• The x, y and z vectors are the basis vectors of 3D space
– Any vector in 3D space can be expressed with x, y and z

• This is possible because they are three orthogonal vectors in a 
three dimensional space
– Orthogonal is defined to mean the dot product is zero:

Vector spaces

�⃗�

�⃗�𝑧

�⃗� 0 �⃗� = �⃗� 0 𝑧 = 𝑧 0 �⃗� = 0

Dot product in matrix notation:

�⃗� 0 �⃗� ≡
1
0
0

$ 0
1
0
= 1 0 0

0
1
0
= 0



• Dirac got sick of using matrix/vector(/integral) notation all the 
time, so invented a new notation:

• The dot product in bra-ket notation (a.k.a. inner product):

Bra-ket notation

�⃗� ≡
1
0
0
≡ | ⟩𝑥 ,			�⃗� ≡

0
1
0
≡ | ⟩𝑦 ,			𝑧 ≡

0
0
1
≡ | ⟩𝑧

‘Ket’

| ⟩𝑥 $ = ⟨ |𝑥 ,   �⃗� 0 �⃗� ≡ 𝑥 𝑦 = 0
‘Bra’

‘Bra-ket’



• This concept can be generalised to arbitrary dimension:

• These basis vectors define the space; they are all orthogonal 
and normalised:

• These are known as Hilbert spaces. Generally, vectors in these 
spaces can have complex coefficients, so the bra is actually the 
conjugate transpose:

Hilbert spaces

⟩|𝑞 ≡

1
0
⋮
0
0

, ⟩|𝑤 ≡

0
1
⋮
0
0

,⋯ , ⟩|𝑒 ≡

0
0
⋮
1
0

, ⟩|𝑟 ≡

0
0
⋮
0
1

⟨ |𝑞 ⟩𝑞 = 1, ⟨ |𝑞 ⟩𝑤 = 0

⟨ |𝑎 = | ⟩𝑎 % = | ⟩𝑎 $ ∗
= | ⟩𝑎 $

FEED FORWARD:
Make sure you can conjugate! 



• Example:

– Are ⟩|𝑎 and ⟩|𝑏 orthogonal?

Hilbert spaces

⟩|𝑎 = 2 + 3𝑖 ⟩|𝑞 + −6 ⟩|𝑟 ≡

2 + 3𝑖
0
⋮
0
−6

⟩|𝑏 = 4 ⟩|𝑤 + 1 − 𝑖 ⟩|𝑟 ≡

0
4
⋮
0

1 − 𝑖

𝑎 𝑏 = 2 − 3𝑖 ⟨ |𝑞 − 6⟨ |𝑟 4 ⟩|𝑤 + 1 − 𝑖 ⟩|𝑟

= 8 − 12𝑖 𝑞 𝑤 + 2 − 3𝑖 1 − 𝑖 𝑞 𝑟 − 24 𝑟 𝑤 − 6 + 6𝑖 𝑟 𝑟

= −6 1 + 𝑖 No!

Note conjugation!

FEED FORWARD:
Practice normalising and 
checking orthogonality 



• Operators in quantum mechanics represent measurements

• Ψ �⃗� is delocalised; probability density given by Ψ �⃗� ∗Ψ �⃗�
(Born interpretation)

• To compare with experiment we must integrate over all spatial 
and spin coordinates coordinates:

– A𝐴 is called the expectation value of operator A𝐴

• The Hamiltonian is an operator that measures the total energy

Operators and expectation values

A𝐴 = C
'

Ψ �⃗� A𝐴Ψ �⃗� 𝑑�⃗�

𝐸 ≡ F𝐻 = C
(

Ψ �⃗� F𝐻Ψ �⃗� 𝑑�⃗�



• So, we need to do a lot of integrals with our wavefunctions; 
can Bra-Ket notation make things simpler?

• Let’s take a pair of spatial MOs, constructed from two AOs:

Ψ) 𝑟 = 𝐶),!𝜓! 𝑟 + 𝐶),"𝜓" 𝑟
Ψ+ 𝑟 = 𝐶+,!𝜓! 𝑟 + 𝐶+,"𝜓" 𝑟

• A simple integral might be:

!
!

Ψ" 𝑟 ∗Ψ$ 𝑟 𝑑𝑟 = !
!

𝐶",&𝜓& 𝑟 + 𝐶",'𝜓' 𝑟 𝐶$,&𝜓& 𝑟 + 𝐶$,'𝜓' 𝑟 𝑑𝑟

Operators and expectation values

MOs

AOs



• Expanding:

Operators and expectation values

C
(

𝐶),!𝜓! 𝑟 + 𝐶),"𝜓" 𝑟 𝐶+,!𝜓! 𝑟 + 𝐶+,"𝜓" 𝑟 𝑑𝑟

= C
(

𝐶),!𝜓! 𝑟 𝐶+,!𝜓! 𝑟 + 𝐶),!𝜓! 𝑟 𝐶+,"𝜓" 𝑟
+𝐶),"𝜓" 𝑟 𝐶+,!𝜓! 𝑟 + 𝐶),"𝜓" 𝑟 𝐶+,"𝜓" 𝑟

𝑑𝑟

= C
(

𝐶),!𝜓! 𝑟 𝐶+,!𝜓! 𝑟 𝑑𝑟 + C
(

𝐶),!𝜓! 𝑟 𝐶+,"𝜓" 𝑟 𝑑𝑟

+C
(

𝐶),"𝜓" 𝑟 𝐶+,!𝜓! 𝑟 𝑑𝑟 + C
(

𝐶),"𝜓" 𝑟 𝐶+,"𝜓" 𝑟 𝑑𝑟



• Assuming that our
basis functions (AOs)
are orthonormal:

• Generally, the combination of a bra and ket implies an integral 
over all space (and spin)!

Operators and expectation values

= 𝐶",&∗𝐶$,&!
!

𝜓& 𝑟 𝜓& 𝑟 𝑑𝑟 + 𝐶",&∗𝐶$,'!
!

𝜓& 𝑟 𝜓' 𝑟 𝑑𝑟

+𝐶",'∗𝐶$,&!
!

𝜓' 𝑟 𝜓& 𝑟 𝑑𝑟 + 𝐶",'∗𝐶$,'!
!

𝜓' 𝑟 𝜓' 𝑟 𝑑𝑟

= 𝐶",&𝐶$,& + 𝐶",'𝐶$,' ≡ 𝐶",& 𝐶",'
𝐶$,&
𝐶$,'

≡ 𝜓" 𝜓$ ≡ !
!

Ψ" 𝑟 Ψ$ 𝑟 𝑑𝑟

!
!

𝜓& 𝑟 𝜓' 𝑟 𝑑𝑟 = 𝟎!
!

𝜓& 𝑟 𝜓& 𝑟 𝑑𝑟 = 𝟏



• So, wavefunctions can be expressed as vectors in a finite basis:

• The Schrödinger equation in this notation:

• This looks just like a matrix-vector equation:

Solving the Schrödinger equation

𝐶),!
𝐶),"
⋮
𝐶),,

≡ | ⟩Ψ)

IF𝐻| ⟩Ψ) = 𝐸)| ⟩Ψ)

𝐴!,! 𝐴!," ⋯ 𝐴!,,
𝐴",! 𝐴"," ⋯ 𝐴",,
⋮ ⋮ ⋱ ⋮

𝐴,,! 𝐴,," ⋯ 𝐴,,,

𝐶),!
𝐶),"
⋮
𝐶),,

=

𝐷),!
𝐷),"
⋮

𝐷),,



• Solving the Schrödinger equation is therefore equivalent to 
finding the coefficients such that:

• 𝐻-,. are the matrix elements of the Hamiltonian matrix IF𝐻, 
found by evaluating the Hamiltonian operator over all basis 
states:

• The Schrödinger equation is an eigenvalue equation, and the 
solution can be found by diagonalising the Hamiltonian 
matrix

𝐻!,! 𝐻!," ⋯ 𝐻!,,
𝐻",! 𝐻"," ⋯ 𝐻",,
⋮ ⋮ ⋱ ⋮

𝐻,,! 𝐻,," ⋯ 𝐻,,,

𝐶),!
𝐶),"
⋮
𝐶),,

= 𝐸)

𝐶),!
𝐶),"
⋮
𝐶),,

𝐻-,. = 𝜓- F𝐻 𝜓. ≡ C
(

𝜓- 𝑟 F𝐻𝜓. 𝑟 𝑑𝑟

Solving the Schrödinger equation



• The Hamiltonian operator F𝐻 acts on a state/ket/wavefunction 
to yield a number and either the same or a different 
state/ket/wavefunction

• The Hamiltonian matrix IF𝐻 is formed by evaluating all the 
matrix elements 𝐻-,. = 𝑎 F𝐻 𝑏 which involve the 
Hamiltonian operator acting on the ket | ⟩𝑏 and then evaluation 
with the bra ⟨ |𝑎

IF𝐻 =

| ⟩𝑎 | ⟩𝑏 | ⟩𝑐
|⟨𝑎
|⟨𝑏
|⟨𝑐

𝑎 F𝐻 𝑎 𝑎 F𝐻 𝑏 𝑎 F𝐻 𝑐
𝑏 F𝐻 𝑎 𝑏 F𝐻 𝑏 𝑏 F𝐻 𝑐
𝑐 F𝐻 𝑎 𝑐 F𝐻 𝑏 𝑐 F𝐻 𝑐

FEED FORWARD: Hamiltonians



• Diagonalisation of a matrix is finding the matrix 𝑃 such that 
𝑃/! IF𝐻𝑃 = 𝐷, where 𝐷 is a diagonal matrix:

• The columns of 𝑃 are the
eigenvectors (wavefunctions),
and the diagonal elements of 𝐷
are the eigenvalues (energies)

• Can be done by hand for 2×2, but usually we use computers!

Solving the Schrödinger equation

𝐷 =

𝐸! 0 ⋯ 0
0 𝐸" ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐸,

𝑃 =

𝐶!,! 𝐶",! ⋯ 𝐶,,!
𝐶!," 𝐶"," ⋯ 𝐶,,"
⋮ ⋮ ⋱ ⋮

𝐶!,, 𝐶",, ⋯ 𝐶,,,

| ⟩Ψ! | ⟩Ψ" | ⟩Ψ,⋯



• Every operator, including the Hamiltonian, must correspond to 
a physical measurement
– Therefore, all expectation values and eigenvalues

must be real numbers

• For this to be true, the Hamiltonian matrix must be hermitian
– This means that it is equal to its conjugate transpose:

– Because of this, the eigenvectors of the Hamiltonian are all 
orthogonal to each other! (But not to the original basis 
vectors)

– Therefore, the eigenvectors are also a basis for the Hilbert 
space! They define the eigenbasis!

Matrix diagonalisation

IF𝐻 = IF𝐻%



• Let’s consider a simple 2D example:
– Basis states:

– Hamiltonian matrix:

• Diagonalisation gives:
– Eigenvectors:

– Eigenvalues:

Matrix diagonalisation

IF𝐻 = 𝑎 𝑏
𝑏 𝑎

NO𝑣! = 1
0 , NO𝑣" = 0

1

NO𝜓! =

1
2
1
2

, NO𝜓" =

1
2

−
1
2

𝐸! = 𝑎 + 𝑏, 𝐸" = 𝑎 − 𝑏



• Plot the eigenvectors in our orthogonal 2D basis:

Matrix diagonalisation

NO𝜓! =

1
2
1
2

, NO𝜓" =

1
2

−
1
2

NO𝜓! =
1
2

NO𝑣! +
1
2

NO𝑣"

NO𝜓" =
1
2

NO𝑣! −
1
2

NO𝑣"

NO𝑣!

NO𝑣"

NO𝜓!NO𝜓" Eigenvectors are orthogonal!

Eigenbasis is just rotated!

Diagonalisation is a rotation
in the Hilbert space!


