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Course Overview

1   Electronic structure of atoms
• Introduction
• Hydrogenic atoms
• Multi-electron atoms
• Ground vs. excited states

4 Hückel theory
• Constructing a Hückel matrix
• Molecular orbitals
• Benzene anion
• Electrophilic and nucleophilic 

attack
2 Electronic structure of 
molecules
• Molecular orbitals
• Molecular electronic structure
• Energy hierarchy

5 Spin Hamiltonians
• A “how-to” guide
• Matrix elements
• Example: S = 1/2
• Example: S = 1

3 Matrix mechanics
• Vector (Hilbert) spaces
• Bra-ket notation
• Operators and expectation values
• Matrix diagonalisation

6   Workshop



Intended learning objectives
1. Construct approximate wave functions for single and multi-electron 

atoms

2. Explain the energy hierarchy of multi-electron atoms

3. Differentiate the concepts of ground and excited electronic states, 
including spin and orbital states

4. Mathematically expand and visualise the spatial wave functions of 
atoms and simple molecules as a linear combination of MOs and basis 
functions

5. Mathematically describe the connection between matrix 
diagonalisation and solution to the Schrödinger equation

6. Construct a Hückel Hamiltonian matrix

7. Employ Bra-Ket notation to evaluate the matrix elements of a simple 
spin Hamiltonian



• Previously, we have seen:

• However, what if we want to fit experimental data to a quantum 
mechanical model? How do we adapt an “ab initio” theory?
– You can’t! They are fixed!

• Spin Hamiltonians are model Hamiltonians that consider only 
the spin coordinates of the electrons
– This is an approximation, but works very well for magnetism
– Spatial part of the wavefunction is a parameter in the model
– Useful for modelling experiments; not an “ab initio” theory!

Spin Hamiltonians
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• The approach is as follows:
– Define basis: ⟩|𝑞 , ⟩|𝑤 , ⟩|𝑒 …

– Write Hamiltonian: (𝐻 = −2𝐽 .𝑆! 0 .𝑆"…

– Choose guess parameters: 𝐽 = −10

– Solve the Schrödinger equation: (𝐻Ψ = 𝐸Ψ

– Use wavefunction to calculate property: .𝐴 = Ψ .𝐴 Ψ

– Does the calculation match experiment?

A “how-to” guide
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• For a given total spin S, there are 2S+1 mS states:

• These are the projections of S
along the quantisation axis (i.e. Sz)

• These states are orthogonal and therefore define a basis:

• Note that the Bra-Ket notation is general to physics, but that the 
problem and the basis states are very different here compared to 
Hückel theory!

A “how-to” guide
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• Remember, the Hamiltonian matrix 9(𝐻 is all the possible 
combinations of bras and kets within our basis:

– Note: I’ve ordered the basis states from –S to S, but you 
could do any order (including S, –S) as long as you are 
consistent and the rows have the same order as the columns

• So how do we evaluate the 𝑚#
$ (𝐻 𝑚# matrix elements?

A “how-to” guide
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• 𝑚#
$ (𝐻 𝑚# can be evaluated using some simple rules:

1. Operators act on kets from left to right
2. Operators do not always commute! .𝐴 ;𝐵 ≠ ;𝐵 .𝐴
3. If the ket is unchanged by the operator, it is an eigenstate of 

the operator (a.k.a. eigenket, eigenfunction, eigenvector).
4. If it does change, it is not an eigenstate.
5. Operators may or may not give a numerical factor.

• Generally,

Matrix elements

!𝐴 #$𝑚! = 𝐴 #$𝑚!
" '𝐻 ⟩|𝜓 = 𝐸# ⟩|𝜓

Note that ⟩|𝜓 is an eigenstate of (𝐻!



• For a single spin S, the rules are:

Matrix elements

!𝑆$ #$𝑚! = 𝑚! #$𝑚!

!𝑆% #$𝑚! = 𝑆 𝑆 + 1 −𝑚! 𝑚! + 1 ⟩|𝑚! + 1

!𝑆& #$𝑚! = 𝑆 𝑆 + 1 −𝑚! 𝑚! − 1 ⟩|𝑚! − 1

• mS is sometimes called Sz
• It is the projection of S on the z-axis
• ?@𝑚1 is an eigenstates of .𝑆2

Not eigenstates of .𝑆±!



• S = 2, mS = -2, -1, 0, +1, +2, basis: ⟩|−2 , ⟩|−1 , ⟩|0 , ⟩|1 , ⟩|2

Matrix elements

!𝑆$ ⟩|−1 = −1 ⟩|−1

!𝑆% ⟩|0 = 2 2 + 1 − 0 0 + 1 ⟩|+1 = 6 ⟩|+1

!𝑆% ⟩|+2 = 2 2 + 1 − 2 2 + 1 ⟩|+3 = 0

!𝑆' ⟩|+1 =
1
2

!𝑆% + !𝑆& ⟩|+1

=
1
2

!𝑆% ⟩|+1 + !𝑆& ⟩|+1 =
1
2

4 ⟩|+2 + 6 ⟩|0

This is the mS = 0 state, not zero!

Note that .𝑆4 ⟩|𝑆 = 0!

FEED FORWARD: Numbers inside bras/kets are labels not coefficients 



• S = 2, mS = -2, -1, 0, +1, +2, basis: ⟩|−2 , ⟩|−1 , ⟩|0 , ⟩|1 , ⟩|2

• Remember:

• Generally,

• So:

Matrix elements

⟨ |−1 !𝑆$ ⟩|−1 = ⟨ |−1 −1 ⟩|−1 = −1 −1 −1

⟨ |𝑞 ⟩𝑞 = 1, ⟨ |𝑞 ⟩𝑤 = 0

⟨ |𝑚(
" ⟩𝑚( = 𝛿)!

",)!

⟨ |−1 !𝑆$ ⟩|−1 = −1



• S = 2, mS = -2, -1, 0, +1, +2, basis: ⟩|−2 , ⟩|−1 , ⟩|0 , ⟩|1 , ⟩|2

Matrix elements

⟨ |𝑚(
" !𝑆± #$𝑚(

= ⟨ |𝑚(
" 𝑆 𝑆 + 1 −𝑚! 𝑚! ± 1 ⟩|𝑚! ± 1

= 𝑆 𝑆 + 1 −𝑚! 𝑚! ± 1 𝑚(
" 𝑚! ± 1

= 𝑆 𝑆 + 1 −𝑚! 𝑚! ± 1 𝛿)!
",)!±,



• So generally,

Matrix elements

⟨ |𝑚(
" !𝑆$ #$𝑚! = 𝑚!𝛿)!

",)!

⟨ |𝑚(
" !𝑆% #$𝑚(

= 𝑆 𝑆 + 1 −𝑚! 𝑚! + 1 𝛿)!
",)!%,

⟨ |𝑚(
" !𝑆& #$𝑚(

= 𝑆 𝑆 + 1 −𝑚! 𝑚! − 1 𝛿)!
",)!&,

So where are these non-zero?



• So for our example, S = 2, mS = -2, -1, 0, +1, +2

• Where would ⟨ |𝑚#
$ .𝑆2 ?@𝑚1 = 𝑚1𝛿5!

",5!
be non-zero?

• What about:

⟨ |𝑚#
$ .𝑆± ?@𝑚# = 𝑆 𝑆 + 1 −𝑚1 𝑚1 ± 1 𝛿5!

",5!±7?

Matrix elements

⟩|−2 ⟩|−1 ⟩|0 ⟩|+1 ⟩|+2

⟨ |−2
⟨ |−1
⟨ |0
⟨ |+1
⟨ |+2

−2 !𝐻 −2 −2 !𝐻 −1 −2 !𝐻 0 −2 !𝐻 +1 −2 !𝐻 +2
−1 !𝐻 −2 −1 !𝐻 −1 −1 !𝐻 0 −1 !𝐻 +1 −1 !𝐻 +2
0 !𝐻 −2 0 !𝐻 −1 0 !𝐻 0 0 !𝐻 +1 0 !𝐻 +2
+1 !𝐻 −2 +1 !𝐻 −1 +1 !𝐻 0 +1 !𝐻 +1 +1 !𝐻 +2
+2 !𝐻 −2 +2 !𝐻 −1 +2 !𝐻 0 +2 !𝐻 +1 +2 !𝐻 +2

Pick this so that this is 1



• Single electron in a magnetic field along x, so we define:

• Single electron, S = 1/2

• What are our basis states?
– mS = -1/2, +1/2

• And what does the matrix look like?

Example: S = 1/2

DE−
1
2
, DE+

1
2

'𝐻 = 𝐵 !𝑆'



Example: S = 1/2

⟨ |𝑚#
$ 𝐵 .𝑆8 ?@𝑚1 = ⟨ |𝑚#

$ 𝐵
2

.𝑆4 + .𝑆9 ?@𝑚1

=
𝐵
2
⟨ |𝑚#

$ .𝑆4 ?@𝑚1 + ⟨ |𝑚#
$ .𝑆9 ?@𝑚1
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Example: S = 1/2

⟨ |𝑚#
$ 𝐵 .𝑆8 ?@𝑚1 = ⟨ |𝑚#
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• Diagonalisation gives (recall this 2×2 result from L3 and L4):

• With eigenvalues:

– Energies of spin states
affected by magnetic field:
Zeeman effect!

Example: S = 1/2
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2
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2
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• Ni(II) in an octahedral crystal field, we are interested in the 
zero-field splitting, so we define:

• 3d8, 3A ground term, S = 1

• What are our basis states?
– mS = -1, 0, +1

• And what does the matrix look like?

Example: S = 1

⟩|−1 , ⟩|0 , ⟩|+1

'𝐻 = 𝐷 !𝑆$
5



• So what are the matrix elements?

Example: S = 1

⟩|−1 ⟩|0 ⟩|+1
⟨ |−1
⟨ |0
⟨ |+1

⟨ |−1 '𝐻| ⟩−1 ⟨ |−1 '𝐻| ⟩0 ⟨ |−1 '𝐻| ⟩+1
⟨ |0 '𝐻| ⟩−1 ⟨ |0 '𝐻| ⟩0 ⟨ |0 '𝐻| ⟩+1
⟨ |+1 '𝐻| ⟩−1 ⟨ |+1 '𝐻| ⟩0 ⟨ |+1 '𝐻| ⟩+1

⟨ |𝑚(
" 𝐷 !𝑆$

5 #$𝑚! = ⟨ |𝑚(
" 𝐷 !𝑆$ !𝑆$ #$𝑚!

= 𝐷𝑚!𝑚!𝛿)!
",)!

= ⟨ |𝑚(
" 𝐷 !𝑆$𝑚! #$𝑚!

= 𝐷𝑚!⟨ |𝑚(
" !𝑆$ #$𝑚!



• Next step: diagonalisation…but our matrix is already diagonal! 
Therefore our existing basis is the eigenbasis of our 
Hamiltonian!

• The states ⟩|±1 are degenerate
with eigenvalue D, while ⟩|0 is
non-degenerate with eigenvalue 0.

Example: S = 1

𝐷E
mS = ±1

mS = 0

⟩|−1 ⟩|0 ⟩|+1
⟨ |−1
⟨ |0
⟨ |+1

⟨ |−1 '𝐻| ⟩−1 ⟨ |−1 '𝐻| ⟩0 ⟨ |−1 '𝐻| ⟩+1
⟨ |0 '𝐻| ⟩−1 ⟨ |0 '𝐻| ⟩0 ⟨ |0 '𝐻| ⟩+1
⟨ |+1 '𝐻| ⟩−1 ⟨ |+1 '𝐻| ⟩0 ⟨ |+1 '𝐻| ⟩+1

𝐷
0
0 0

0

𝐷
0
0

0



• We have a library of operators to build Hamiltonians: what we 
choose depends on the problem we have in the lab!

– Magnetic coupling: (𝐻 = −2𝐽 .𝑆! 0 .𝑆"

– Magnetic anisotropy: (𝐻 = 𝐷 .𝑆2
:

– Spin-orbit coupling: (𝐻 = 𝜆;𝐿 0 .𝑆

– Magnetic fields: (𝐻 = 𝜇"𝑔𝐵 0 .𝑆

• I will give you the Hamiltonian in questions: you are not 
expected to memorise these!

Writing Hamiltonians


