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Course Overview

1 Fundamentals 5 Single-molecule magnets I
* Motivation » Single-molecule magnets
* Origins of magnetism * Electrostatic model

* Bulk magnetism

2 Quantum mechanics of magnetism | 6 Single-molecule magnets 11

* Zeeman effect * Measuring magnetic relaxation
 Statistical mechanics * Relaxation mechanisms
* Magnetisation » Latest research

Magnetic susceptibility

3 Magnetic coupling 7 Magnetic resonance imaging

* Exchange Hamiltonian * Paramagnetic NMR

* Experimental measurements * Magnetic resonance imaging

* Vector coupling * Latest research

4 Magnetic anisotropy 8 Quantum information processing
» Zero-field splitting * Quantum information

DiVincenzo criteria
Latest research
Question time

* Impact on properties
* Lanthanides
* Spin-orbit coupling




Intended learning outcomes

1.

Explain the origin of magnetism arising from electrons in atoms
and molecules using formal quantum-mechanical terms

Compare and contrast the electronic structure of metal 10ons 1n
molecules and their magnetic properties, for metals across the
periodic table

Select and apply appropriate models and methods to calculate
molecular magnetic properties such as magnetisation, magnetic
susceptibility and paramagnetic NMR shift

Deconstruct topical examples of molecular magnetism including
single-molecule magnetism, molecular quantum information
processing and MRI contrast agents




Spin states

* Metal 10ns in octahedral geometry can have multiple unpaired

electrons

— These “add up” to give total spin > s = 1/2:

Ton Ground state | Spin
Cu(II) d° ’E S=1/2
Ni(II) d® A S=1
Cr(III) d3 ‘A S=3/2
Mn(II) d* E §S=2
Fe(III) d° 5A S=35/2

* A spin state S has 25+1 mg components:

— mg=-S,-S+1,...,51,S

—eg S=1;mg=-1,0,+1




Zeeman effect

A magnetic field will cause magnetic moments to align

In other words, moments anti-parallel to the magnetic field are
in a higher energy state than those parallel to the field

Zeeman Hamiltonian:
A —_> /_\)

H=uggB -5 = uBg(Bxfx + B,S,, + BZSZ)

Example: _ )
~8§=5/2,B,=B,=0 H=uggBb,S,

— What are the energies of the mg states?



Recap: Solving the Schrodinger equation

Determine the Hamiltonian matrix ﬁ

Diagonalise A (this finds the matrix P such that P-1AP =D,

where D 1s a diagonal matrix):

E; 0 - 07
p=|, 7 ¢
0 0 - Eyl

The columns of P are the
eigenvectors (wavefunctions),

and the diagonal elements of D P =
are the eigenvalues (energies)

Solution to Schrodinger!

CN,1'
Cpn 2

')




Recap: Matrix elements

* For a single spin S, the rules are:

* mg1s sometimes called S,

* [t 1s the projection of S on the z-axis
. |m5) is an eigenstates of S,

Not eigenstates of S, !

JSS +1) —mg(mg + 1Ym, + 1

o)

TN

=SS +1) —ms(ms — 1)Nm, — 1
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 So what are the ma

:uBgBZmS(SmS’,mS

mg)

,uBng<mS’|§z

mg)

A

B,S,

(ms'|ugg



Example: §=5/2, B, =B,=0

0

So what are the matrix elements?

0

(mSllﬂBng§z|mS> = :uBgBZ<mS’|§Z|mS> = HBngmsamS’,mg



Zeeman effect

* A magnetic field will cause magnetic moments to align

Energy (cm?)

In other words, moments anti-parallel to the magnetic field are

in a higher energy state than those parallel
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Zeeman effect

* Note how Zeeman diagram relates to the energy level diagram
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Statistical mechanics

* How do we know which m state a given molecule 1s 1n?

* Boltzmann statistics tells us probabilities or populations in
thermodynamic equilibrium

dim

— The partition function, Z: Z = z €Xp [k T
B

— The probability of a molecule being 1n state i or the
fractional population of state 7 in the ensemble 1is:

—ex ~ -1p—1
Di p[kBT kg =~ 0.695 cm™1K

— ALWAYS set lowest energy as E; = (!




Magnetisation (M)

* We measure the “magnetism” of a sample by its magnetisation:

dE
M ——— How magnetic field Population of the

dB affects each state state

— Energy levels are functions of the magnetic field

 Units: VN, ug
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Magnetisation (M)
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Magnetisation (M)

1 {dE 1 —E; }
Z ldB 7 P kT

When all population
n mg=-S,
magnetisation 1s
saturated.

M

sat

~ g5 1n ug units

M(” M (N, H;)

Useful to determine S




Magnetic susceptibility (y)

* Another useful quantity describes how easy it 1s to magnetise a

sample:

AM
o —
X 4B
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Magnetic susceptibility (y)

S=5/2
4
S=2
~ 3-
1 S=3/2
£
= s-1
1 -
| s 1/2
o

Linear at low field:
x=0.5585xM/B




Magnetic susceptibility (y)

* The empirical Curie law states:

C

X=7

* As the temperature drops, the sample becomes more
susceptible to the magnetic field

* For perfect paramagnets:

.UB
C =——N,q%S(S +1
3k, 19°S( )

2

—S(S+1)




Magnetic susceptibility (y)

* Rearranging,
g2
)(T=Cz?S(S+1)
e Therefore 1f the Curie Law holds, T vs. T should be constant

* As temperature 1s lowered we (usually) see deviations from
Curie-like behaviour (this 1s where the fun happens)



* For§=1withg=2.1:

1. What are the populations of the states at 0.1 T and 2 K?
2. What 1s the magnetisation at 0.1 T and 2 K?

3. What are the populations and magnetisation at zero field?

4. Using your answers from above, approximate the value of yT at
0.1 T and 2 K. Compare this to the value of the Curie constant.

Note: ug = 0.467 cm™ T! and kg ~ 0.695 cm™ 1K1



