CHEM40111/CHEM40121 Molecular magnetism 2 Quantum mechanics of magnetism

The University of Manchester

Nick Chilton

G.012 Dover St Building

T: 54584

E: nicholas.chilton@manchester.ac.uk

Course Overview

1 Fundamentals Motivation Origins of magnetism Bulk magnetism	 5 Single-molecule magnets I Single-molecule magnets Electrostatic model 	
 2 Quantum mechanics of magnetism Zeeman effect Statistical mechanics Magnetisation Magnetic susceptibility 	 6 Single-molecule magnets II Measuring magnetic relaxation Relaxation mechanisms Latest research 	
 3 Magnetic coupling • Exchange Hamiltonian • Experimental measurements • Vector coupling 	 7 Magnetic resonance imaging Paramagnetic NMR Magnetic resonance imaging Latest research 	
 4 Magnetic anisotropy Zero-field splitting Impact on properties Lanthanides Spin-orbit coupling 	 8 Quantum information processing Quantum information DiVincenzo criteria Latest research Question time 	

Intended learning outcomes

- 1. Explain the origin of magnetism arising from electrons in atoms and molecules using formal quantum-mechanical terms
- 2. Compare and contrast the electronic structure of metal ions in molecules and their magnetic properties, for metals across the periodic table
- 3. Select and apply appropriate models and methods to calculate molecular magnetic properties such as magnetisation, magnetic susceptibility and paramagnetic NMR shift
- 4. Deconstruct topical examples of molecular magnetism including single-molecule magnetism, molecular quantum information processing and MRI contrast agents

Spin states

- Metal ions in octahedral geometry can have multiple unpaired electrons
 - These "add up" to give total spin > s = 1/2:

Ion	Ground state	Spin
Cu(II) d ⁹	$^{2}\mathrm{E}$	S=1/2
Ni(II) d ⁸	^{3}A	S=1
Cr(III) d ³	⁴ A	S = 3/2
Mn(II) d ⁴	5E	S=2
Fe(III) d ⁵	⁶ A	S = 5/2

• A spin state S has 2S+1 m_S components:

$$-m_S = -S, -S+1, ..., S-1, S$$

$$-e.g. S = 1; m_S = -1, 0, +1$$

Zeeman effect

- A magnetic field will cause magnetic moments to align
- In other words, moments anti-parallel to the magnetic field are in a higher energy state than those parallel to the field
- Zeeman Hamiltonian:

$$\widehat{H} = \mu_B g \overrightarrow{B} \cdot \overrightarrow{\hat{S}} = \mu_B g \left(B_x \widehat{S}_x + B_y \widehat{S}_y + B_z \widehat{S}_z \right)$$

• Example:

$$-S = 5/2, B_x = B_y = 0$$
 $\hat{H} = \mu_B g B_z \hat{S}_z$

– What are the energies of the m_S states?

Recap: Solving the Schrödinger equation

- Determine the Hamiltonian matrix $\overline{\widehat{H}}$
- Diagonalise $\overline{\widehat{H}}$ (this finds the matrix P such that $P^{-1}\overline{\widehat{H}}P = D$, where D is a diagonal matrix):

$$D = \begin{bmatrix} E_1 & 0 & \cdots & 0 \\ 0 & E_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & E_N \end{bmatrix}$$

• The columns of *P* are the *eigenvectors* (wavefunctions), and the diagonal elements of *D* are the *eigenvalues* (energies)

$$P = \begin{bmatrix} C_{i,1} & C_{k,1} & \cdots & C_{N,1} \\ C_{i,2} & C_{k,2} & \cdots & C_{N,2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{i,N} & C_{k,N} & \cdots & C_{N,N} \end{bmatrix}$$
$$|\Psi_i\rangle \quad |\Psi_k\rangle \quad \cdots \quad |\Psi_N\rangle$$

• Solution to Schrödinger!

Recap: Matrix elements

• For a single spin S, the rules are:

$$\left|\hat{S}_{z}|m_{s}\right\rangle = m_{s}|m_{s}\rangle$$

- m_S is sometimes called S_z
- It is the *projection* of *S* on the z-axis
- $|m_s\rangle$ is an eigenstates of \hat{S}_z

Not eigenstates of
$$\hat{S}_{\pm}!$$

$$\hat{S}_{-}(m_S) = \sqrt{S(S+1) - m_S(m_S+1)} m_S + 1$$

$$\hat{S}_{-}(m_S) = \sqrt{S(S+1) - m_S(m_S-1)} m_S - 1$$

Example: S = 5/2, $B_x = B_y = 0$

$$\begin{vmatrix} -\frac{5}{2} \end{vmatrix} \qquad \begin{vmatrix} -\frac{3}{2} \end{vmatrix} \qquad \begin{vmatrix} -\frac{1}{2} \end{vmatrix} \qquad \begin{vmatrix} +\frac{1}{2} \end{vmatrix} \qquad \begin{vmatrix} +\frac{1}{2} \end{vmatrix} \qquad \begin{vmatrix} +\frac{3}{2} \end{vmatrix} \qquad \begin{vmatrix} +\frac{5}{2} \end{vmatrix}$$

$$\langle -\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle -\frac{5}{2} | \hat{H} | -\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle -\frac{5}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle -\frac{5}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle -\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle -\frac{3}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle -\frac{3}{2} | \hat{H} | -\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle -\frac{3}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle -\frac{3}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle -\frac{3}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle -\frac{1}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle -\frac{1}{2} | \hat{H} | -\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle -\frac{1}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle -\frac{1}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle -\frac{1}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{1}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{1}{2} | \hat{H} | -\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{1}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{1}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle +\frac{1}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{3}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{3}{2} | \hat{H} | -\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{3}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{3}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle +\frac{3}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{3}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | -\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{1}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle \qquad \langle +\frac{5}{2} | \hat{H} | +\frac{5}{2} \rangle$$

$$\langle +\frac{5}{2} | \hat{H} | -\frac{5}{2} \rangle \qquad \langle +\frac$$

• So what are the matrix elements?

$$\langle m_{S}' | \mu_{B} g B_{z} \hat{S}_{z} | m_{S} \rangle = \mu_{B} g B_{z} \langle m_{S}' | \hat{S}_{z} | m_{S} \rangle = \mu_{B} g B_{z} m_{S} \delta_{m_{S}', m_{S}}$$

Example: S = 5/2, $B_x = B_y = 0$

$$\begin{vmatrix} -\frac{5}{2} \\ -\frac{5}{2} \end{vmatrix} = \begin{vmatrix} -\frac{3}{2} \\ -\frac{5}{2} \\ -\frac{5}{2} \end{vmatrix} = \begin{vmatrix} -\frac{5}{2} \mu_B g B_z \\ 0 & -\frac{3}{2} \mu_B g B_z \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & -\frac{3}{2} \mu_B g B_z \\ 0 & 0 & -\frac{1}{2} \mu_B g B_z \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{2} \mu_B g B_z \\ 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} -\frac{1}{$$

So what are the matrix elements?

$$\langle m_{S}' | \mu_{B} g B_{z} \hat{S}_{z} | m_{S} \rangle = \mu_{B} g B_{z} \langle m_{S}' | \hat{S}_{z} | m_{S} \rangle = \mu_{B} g B_{z} m_{S} \delta_{m_{S}', m_{S}}$$

Zeeman effect

- A magnetic field will cause magnetic moments to align
- In other words, moments anti-parallel to the magnetic field are in a higher energy state than those parallel to the field

Zeeman effect

Note how Zeeman diagram relates to the energy level diagram

Statistical mechanics

- How do we know which m_S state a given molecule is in?
- Boltzmann statistics tells us *probabilities* or *populations* in thermodynamic equilibrium
 - The partition function, Z:

- The probability of a molecule being in state *i* or the fractional population of state *i* in the ensemble is:

$$p_i = \frac{1}{Z} \exp\left[\frac{-E_i}{k_B T}\right]$$

$$k_B \approx 0.695 \ cm^{-1} K^{-1}$$

- ALWAYS set lowest energy as $E_i = 0!$

• We measure the "magnetism" of a sample by its magnetisation:

$$M \propto -\frac{dE}{dB}$$
 How magnetic field affects each state Population of the state $M = -\frac{1}{\mu_B} \sum_{i=1}^{dim} \left\{ \frac{dE_i}{dB} \left[\frac{1}{Z} \exp \left[\frac{-E_i}{k_B T} \right] \right] \right\}$

- Energy levels are functions of the magnetic field
- Units: $N_A \mu_B$

$$M = -\frac{1}{\mu_B} \sum_{i=1}^{aim} \left\{ \frac{dE_i}{dB} \frac{1}{Z} \exp\left[\frac{-E_i}{k_B T}\right] \right\}$$

When all population in $m_S = -S$, magnetisation is *saturated*.

 $M_{sat} \approx gS$ in μ_B units

Useful to determine *S*

• Another useful quantity describes how easy it is to magnetise a sample:

$$\chi \propto \frac{dM}{dB}$$

$$\chi = \frac{N_A}{10k_BTZ^2} \begin{bmatrix} Z\left(\sum_{i=1}^{dim} \left\{ \left(\frac{dE_i}{dB}\right)^2 \exp\left[\frac{-E_i}{k_BT}\right] \right\} - k_BT \sum_{i=1}^{dim} \left\{ \frac{d^2E_i}{dB^2} \exp\left[\frac{-E_i}{k_BT}\right] \right\} \right) \\ - \left(\sum_{i=1}^{dim} \left\{ \frac{dE_i}{dB} \exp\left[\frac{-E_i}{k_BT}\right] \right\} \right)^2 \end{bmatrix}$$

• Units: $cm^3 mol^{-1}$

• The empirical Curie law states:

$$\chi = \frac{C}{T}$$

• As the temperature drops, the sample becomes more susceptible to the magnetic field

• For perfect paramagnets:

$$C = \frac{{\mu_B}^2}{3k_B} N_A g^2 S(S+1) \approx \frac{g^2}{8} S(S+1)$$

Rearranging,

$$\chi T = C \approx \frac{g^2}{8} S(S+1)$$

- Therefore if the Curie Law holds, χT vs. T should be constant
- As temperature is lowered we (usually) see deviations from Curie-like behaviour (this is where the fun happens)

Problem set:

- For S = 1 with g = 2.1:
- 1. What are the populations of the states at 0.1 T and 2 K?
- 2. What is the magnetisation at 0.1 T and 2 K?
- 3. What are the populations and magnetisation at zero field?
- 4. Using your answers from above, approximate the value of χT at 0.1 T and 2 K. Compare this to the value of the Curie constant.

Note: $\mu_{\rm B} \approx 0.467 \text{ cm}^{-1} \text{ T}^{-1} \text{ and } k_B \approx 0.695 \text{ cm}^{-1} K^{-1}$