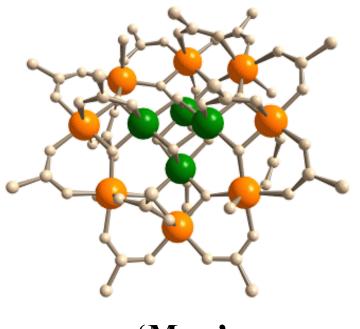
CHEM40111/CHEM40121 Molecular magnetism 5 Single-molecule magnets I

The University of Manchester

Nick Chilton G.012 Dover St Building T: 54584 E: nicholas.chilton@manchester.ac.uk

Course Overview

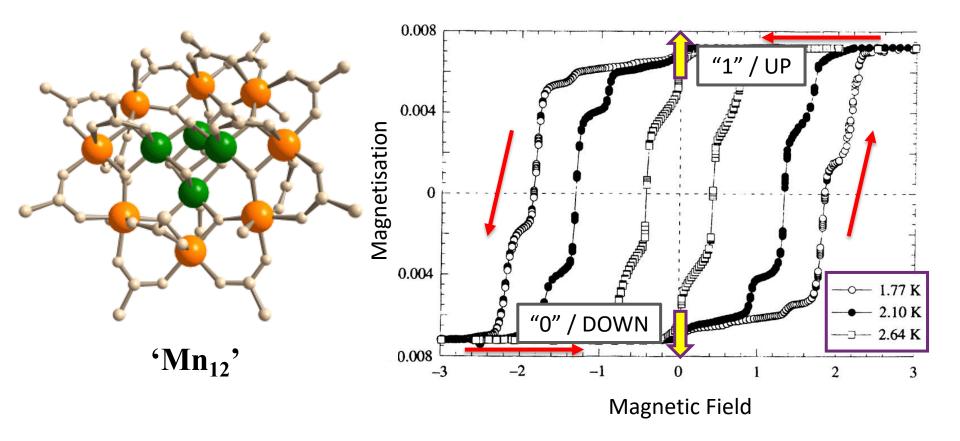

 1 Fundamentals Motivation Origins of magnetism Bulk magnetism 	 5 Single-molecule magnets I Single-molecule magnets Electrostatic model
 2 Quantum mechanics of magnetism Zeeman effect Statistical mechanics Magnetisation Magnetic susceptibility 	 6 Single-molecule magnets II Measuring magnetic relaxation Relaxation mechanisms Latest research
 3 Magnetic coupling • Exchange Hamiltonian • Experimental measurements • Vector coupling 	 7 Magnetic resonance imaging Paramagnetic NMR Magnetic resonance imaging Latest research
 4 Magnetic anisotropy 2ero-field splitting Impact on properties Lanthanides Spin-orbit coupling 	 8 Quantum information processing Quantum information DiVincenzo criteria Latest research Question time

Intended learning outcomes

- 1. Explain the origin of magnetism arising from electrons in atoms and molecules using formal quantum-mechanical terms
- 2. Compare and contrast the electronic structure of metal ions in molecules and their magnetic properties, for metals across the periodic table
- 3. Select and apply appropriate models and methods to calculate molecular magnetic properties such as magnetisation, magnetic susceptibility and paramagnetic NMR shift
- 4. Deconstruct topical examples of molecular magnetism including single-molecule magnetism, molecular quantum information processing and MRI contrast agents

Molecular magnets

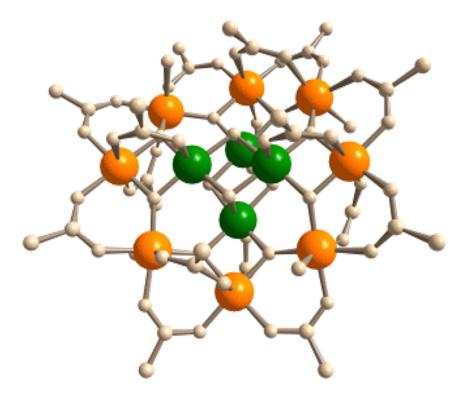
• What about molecules? Can control properties with chemistry! - If we could store information in a molecule, what would the density be?

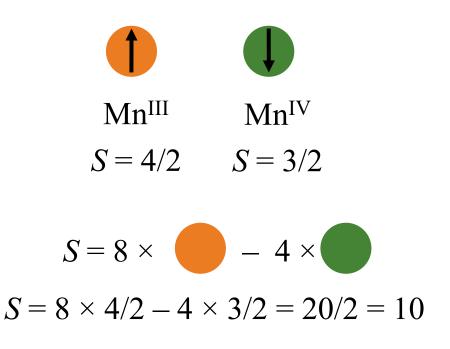


'Mn₁₂**'**

- ~ 2 nanometres square
- $= 4 \text{ nm}^2 \text{ bit}^{-1}$
- $= 6.2 \times 10^{-15} \text{ in}^2 \text{ bit}^{-1}$
- ~ 20,120 GB in⁻²
- 100 times better than current tech! $(\sim 200 \text{ GB in}^{-2})$
- Data centres 100 times smaller?

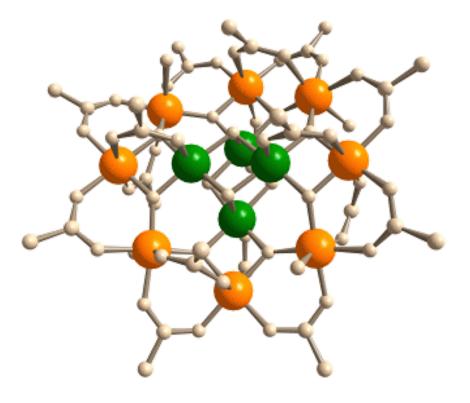
Molecular magnets


- <u>Definition</u>:
 - Molecules that show magnetic memory effects


[1] R. Sessoli et al., Nature, 1993, **365**, 141; [2] L. Thomas et al., Nature, 1996, **383**, 145; [3] J. R. Friedman et al., Phys. Rev. Lett., 1996, **76**, 3830.

How does it work?

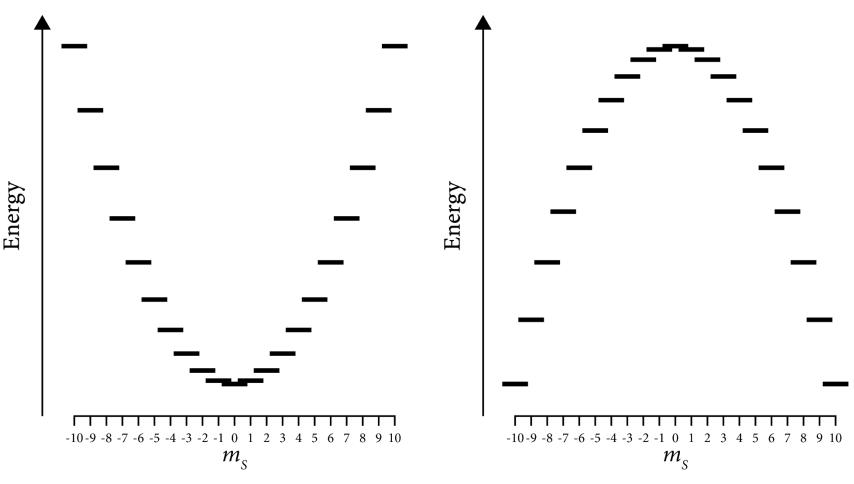
- Requirements:
 - Large spin ground state
 - Uniaxial magnetic anisotropy (axial zero-field splitting)


• Magnetic exchange interactions

'Mn₁₂Ac'

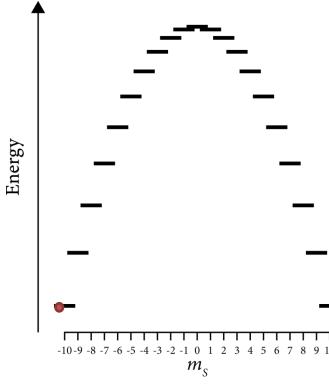
How does it work?

- Requirements:
 - Large spin ground state
 - Uniaxial magnetic anisotropy (axial zero-field splitting)

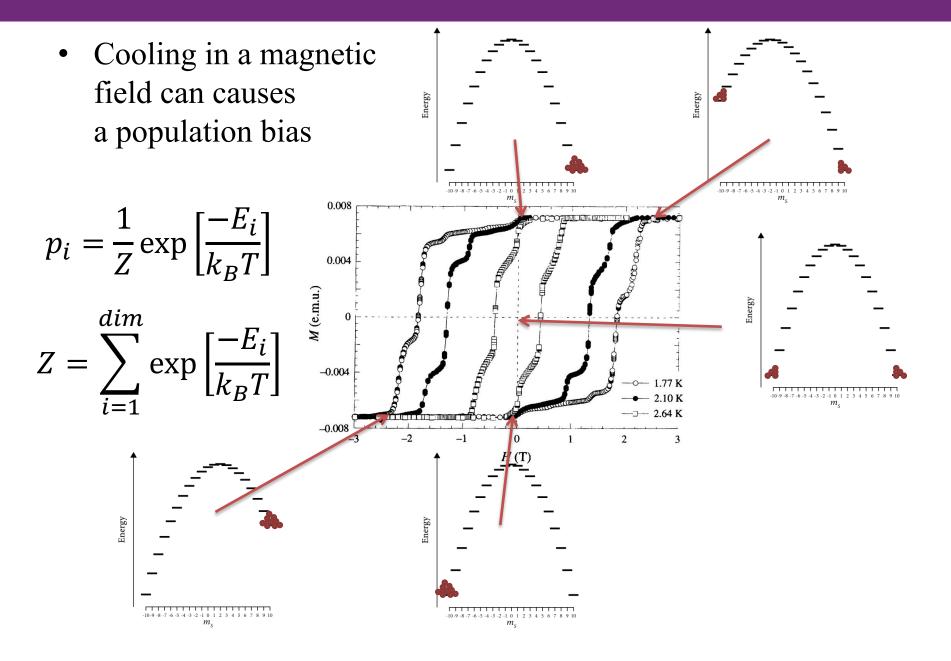

- 'Mn₁₂Ac' has D_{2d} symmetry, giving it an S₄ axis
- There is ZFS of the S = 10 state

'Mn₁₂Ac'

Zero-field splitting


- S = 10 ground state split in the absence of magnetic field
- Two options if axially symmetric:

- $m_S = 0$ state is most stable - $m_S = \pm 10$ states most stable



Energy barrier to relaxation

- A molecule can be prepared in either the $m_S = +10$ or $m_S = -10$ state by cooling in a magnetic field
- The molecule must jump between all the intermediate states to get to the other side this is the energy barrier to magnetic relaxation

Hysteresis

Relaxation rates

- The characteristic rate for molecules to jump over this barrier is called the *relaxation rate*
- The energy available to a single molecule is determined by the thermal energy (temperature)
- The relaxation rate is therefore dependent on temperature, according to the Arrhenius Law

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right]$$

Mn₁₂Ac U_{eff} = 42 cm⁻¹
Height of energy barrier

Recipe for SMMs?

• According to the Arrhenius Law, relaxation rates get slower as the energy barrier U_{eff} gets bigger:

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right]$$

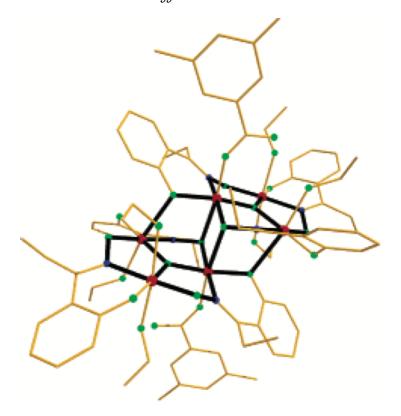
• We've seen that U_{eff} comes from ZFS, for which the Hamiltonian is:

$$\widehat{H} = D \widehat{S}_z^2$$

• Doing some maths, you can show that:

$$U_{eff} = |D|S^2$$

- U_{eff} scales as S^2 so making S big might be a good idea!


Brief history of SMMs

Many HUGE high-spin clusters made: $Fe_{19} \rightarrow S = 33/2$, Powell and Heath^[1] $U_{eff} \sim 14 \text{ cm}^{-1}$ $U_{eff} \sim 11 \text{ cm}^{-1}$ $Mn_{25} \rightarrow S = 51/2$, Christou^[2] $Mn_{19} \rightarrow S = 83/2$, Powell^[3] $U_{eff} \sim 0 \text{ cm}^{-1}$ $U_{\rho ff} \sim 0 \ {\rm cm}^{-1}$ $Fe_{42} \rightarrow S = 45$, Sato^[4] $Fe_{10}Gd_{10} \rightarrow S = 60$, Schnack and Powell^[5] $U_{\rho ff} \sim 0 \text{ cm}^{-1}$ $U_{eff} = 2 \text{ cm}^{-1}$ $Ni_{21}Gd_{20} \rightarrow S = 91$ Engelhardt, Winpenny and Zheng^[6]

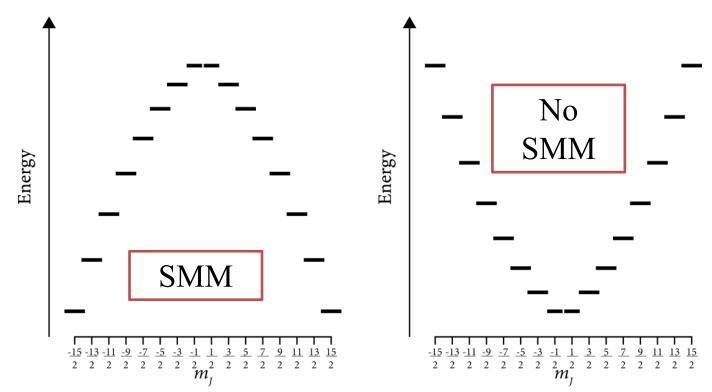
[1] Heath *et al.*, *J. Chem. Soc. Dalton Trans.*, 2000, 1835; [2] Christou *et al.*, *J. Am. Chem. Soc.*, 2004, **126**, 4766; [3] Powell *et al.*, *Angew. Chem. Int. Ed.*, 2006, **45**, 4926; [4] Sato *et al.*, *Nature Commun.*, 2015, **6**, 5955; [5] Powell *et al.*, *npj Quant. Mater.*, 2018, **3**, 10; [6] Zheng *et al.*, *Nature Commun.*, 2018, **9**, 2107.

Brief history of SMMs

• So what was the biggest U_{eff} for a transition metal SMM?

• Mn₆ by Brechin^[1] has S = 12, D = -0.43 and $U_{eff} = 60$ cm⁻¹ (so slightly better than $U_{eff} = 42$ cm⁻¹ for Mn₁₂Ac)

[1] Milios et al., J. Am. Chem. Soc., 2007, 129, 2754.

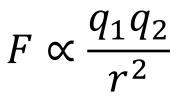

Lanthanide SMMs

- So instead of maximising *S*, what about maximising *D*?
- *D* is the axial magnetic anisotropy
 - Recall that this comes from the *orbital angular momentum*
 - Thus, we should use lanthanides with unquenched orbital angular momentum
- The requirements for lanthanide SMMs become:
 - Large spin $(S) \Rightarrow$ *Large total angular momentum (J)*
 - Axial zero-field splitting ⇒ axial crystal field splitting

Lanthanide SMMs

- The magnetic anisotropy of the lanthanides is determined by the crystal field
- Crystal field states provide the barrier to magnetic relaxation and result in SMM behaviour

- Must have largest m_J as ground state

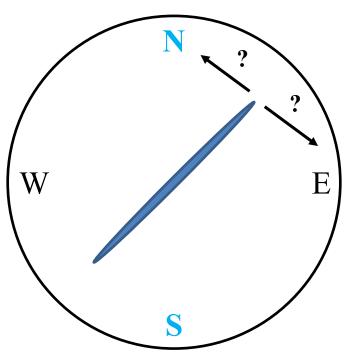

Lanthanide SMMs

- Two questions:
 - If our molecule is low symmetry, how do we know where the special magnetic axis is?
 - How can we design molecules to be better SMMs?
- There is no single answer to this, open research topic

• One idea is to use classical electrostatics...

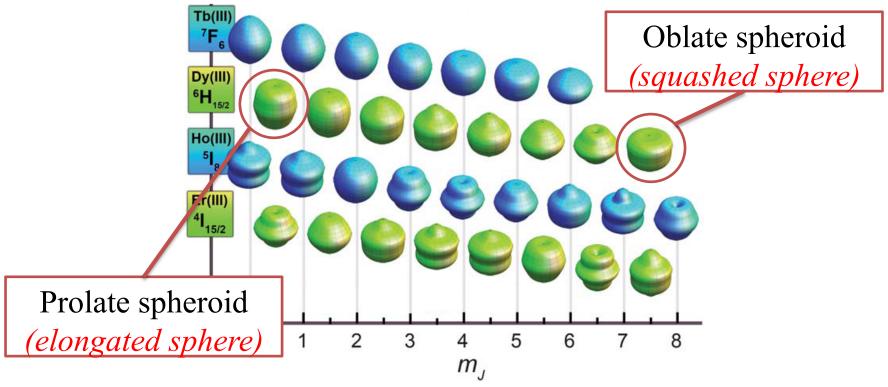
Reminder about electrostatics

- Remember Coulomb's law:
 - Like charges repel each other
 - Unlike charges attract each other

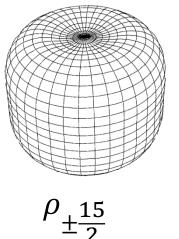


- Instead of point charges, let's consider the two limiting shapes with axial symmetry:
 - Long and thin, needle-like (prolate):

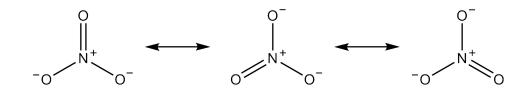
- Flat and round, disk-like (oblate):
- Both have a C_{∞} axis!


Reminder about electrostatics

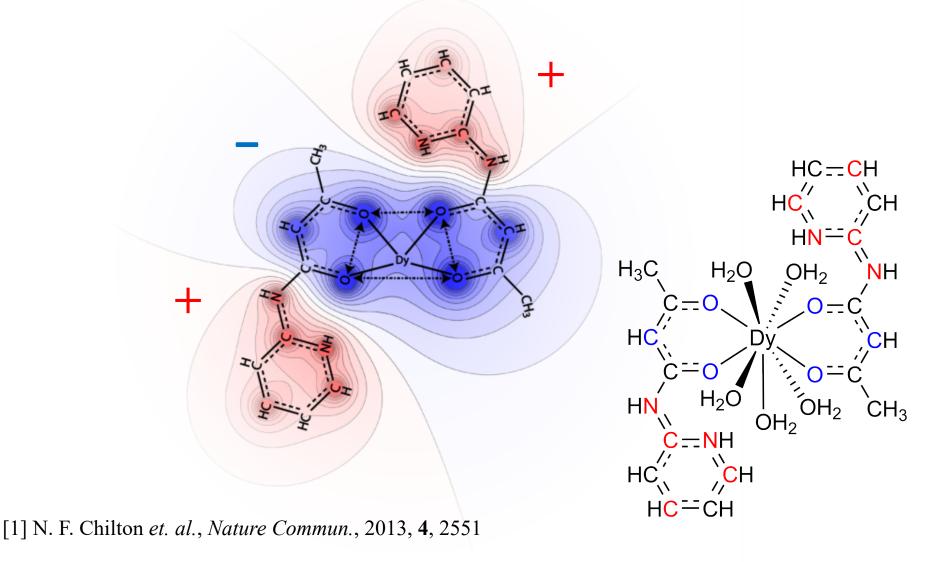
• Imagine a two dimensional compass, where the needle is negatively charged and the North and South poles have negative point charges at them.


• Which way does the needle want point?

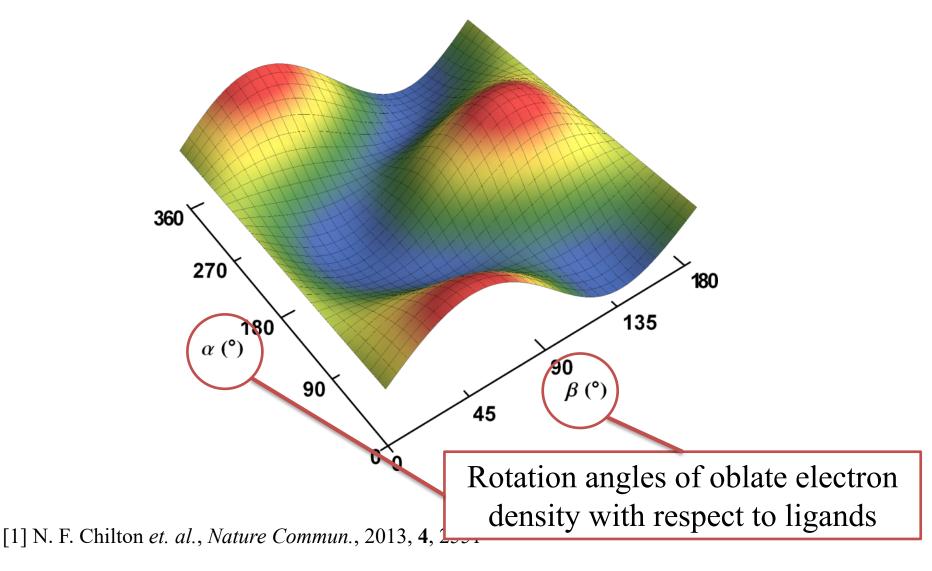
- A free ion has spherical symmetry, but once in a molecule, the m_J states have *aspherical* electron density distributions.
- Note that all these shapes have a C_{∞} axis! This is called the principal axis, and is the same as the projection axis of m_J .


[1] J. Sievers, Z. Phys. B Cond. Matter., 1982, 45, 289; [2] J. D. Rinehart and J. R. Long, Chem. Sci., 2011, 2, 2078

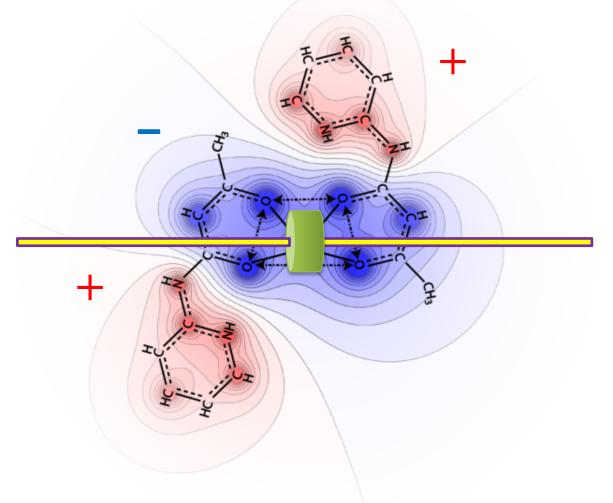
- Question 1: how do we know where the special magnetic axis is?
- Most Dy(III) complexes have a crystal field which gives the $m_J = \pm 15/2$ ground state, hence many Dy(III) complexes are SMMs
 - There is no clear answer why this is the case


• If we make this assumption, can we determine where the magnetic axis is?

- Let's use electrostatics to see which direction this electron density wants to point
- How do we determine the electrostatic potential of our molecular environment?
 - Let's draw formal charges on our ligands!



• What are the charges for the resonance hybrid?


• Superimpose partial point charges on X-Ray crystal structure

• Rotate the oblate density to find the minimum energy

• Rotate the oblate density to find the minimum energy

[1] N. F. Chilton et. al., Nature Commun., 2013, 4, 2551

- Question 2: How can we design better SMMs?
- For Dy(III), *stabilise* $m_J = \pm 15/2$ and *destabilise* $m_J = \pm 1/2$
 - What charge distribution would accomplish this?

[1] N. F. Chilton et. al., Nature Commun., 2013, 4, 2551

Problem set:

- 1. Consider a trigonal planar complex [DyCl₃]:
 - a) Sketch a structural diagram of the complex annotating all the proper rotation axes and reflection planes.
 - b) Following the electrostatic model, what would be the ground m_J state? Explain your answer.
 - c) Draw an energy level diagram (energy vs. m_J) showing all m_J states and their relative energies.
 - d) Would this molecule be a SMM? Explain why or why not.