CHEM40111/CHEM40121 Molecular magnetism: tools and applications 6 Single-molecule magnets II

The University of Manchester

Nick Chilton

Room 7.20 T: 54584 E: nicholas.chilton@manchester.ac.uk

Course Overview

 Fundamentals Motivation Origins of magnetism Bulk magnetism 	 5 Single-molecule magnets I Single-molecule magnets Electrostatic model
 2 Quantum mechanics of magnetism Zeeman effect Statistical mechanics Magnetisation Magnetic susceptibility 	 6 Single-molecule magnets II Measuring magnetic relaxation Relaxation mechanisms Latest research
 3 Magnetic coupling • Exchange Hamiltonian • Experimental measurements • Vector coupling 	 7 Magnetic resonance imaging Paramagnetic NMR Magnetic resonance imaging Latest research
 4 Magnetic anisotropy 2ero-field splitting Impact on properties Lanthanides Spin-orbit coupling 	 8 Quantum information processing Quantum information DiVincenzo criteria Latest research Question time

Intended learning outcomes

- 1. Explain the origin of magnetism arising from electrons in atoms and molecules using formal quantum-mechanical terms
- 2. Compare and contrast the electronic structure of metal ions in molecules and their magnetic properties, for metals across the periodic table
- 3. Select and apply appropriate models and methods to calculate molecular magnetic properties such as magnetisation, magnetic susceptibility and paramagnetic NMR shift
- 4. Deconstruct topical examples of molecular magnetism including single-molecule magnetism, molecular quantum information processing and MRI contrast agents

World record U_{eff} barrier

 Collaboration with Prof. Yanzhen Zheng (Xi'an, China): O⁻–Dy–O⁻ = 178.9°

[1] Y.-S. Ding et. al., Angew. Chem. Int. Ed., 2016, 55, 16071

High-temperature SMMs?

• So Dy^{III} SMMs can have HUGE barriers....are there any drawbacks?

[1] Y.-S. Ding et. al., Angew. Chem. Int. Ed., 2016, 55, 16071

Measuring magnetic relaxation

• The relaxation rate can be measured using alternating current (AC) susceptibility

Energy

- Magnetic field oscillates positive and negative

- At some temperature, the molecules can't jump the barrier fast enough to keep up with the AC frequency
 - We see an *out-of-phase* signal

$$\tau^{-1} = 2\pi\nu$$

Measuring magnetic relaxation

- We can also use direct current (DC) techniques
 - Apply a field to magnetise the same, switch it off and watch the magnetisation decay

- How do the molecules magically jump between these magnetic states?
- They are not isolated and interact with their environment
- They can absorb or emit *phonons* quantised vibrational modes of the crystal lattice
- Recall molecular vibrations/phonons are essentially the microscopic origin of temperature
- The exchange of phonons conserves the energy and angular momentum of the entire crystal

Energy

• Two different kinds of spin-phonon transitions:

- Direct interaction
 - A single phonon absorbed or emitted

$$\gamma_{a,b} \propto \sum_{i} |\langle a | \hat{H}_{i} | b \rangle|^{2}$$

- Raman interaction
 - Two phonons involved *via* 'virtual state'

$$\gamma_{a,b} \propto \sum_{c} \sum_{i} \sum_{j} \frac{|\langle a | \hat{H}_{i} | c \rangle \langle c | \hat{H}_{j} | b \rangle|^{2}}{E_{c}}$$

• A third type of transition is possible:

- Quantum tunnelling of the magnetisation (QTM)
 - No energy cost, no phonons involved

- Most commonly, we observe multiple sequential transitions
- For $Mn_{12}Ac$ we see sequential Direct spin-phonon transitions
- This is collectively known as the Orbach process and has an exponential temperature dependence

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right]^{\frac{\omega}{H}}$$

• Note similarity to Arrhenius Law and first order reaction kinetics

- Most commonly, we observe multiple sequential transitions
- For Ln SMMs four sequences are common:
 - 1. The Orbach process. It is unusual to reach the most energetic states in Ln SMMs.

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right]^{\frac{1}{2}}$$

- Most commonly, we observe multiple sequential transitions
- For Ln SMMs four sequences are common:
 - 2. Direct transitions with a QTM step, thermally-assisted QTM (TA-QTM). Also has an exponential temperature dependence. *Impossible to distinguish from the Orbach process!*

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right]$$

- Most commonly, we observe multiple sequential transitions
- For Ln SMMs four sequences are common:
 - 3. Ground state QTM. This is temperature independent.

independent.

$$\tau^{-1} = \tau_{QTM}^{-1}$$

$$FEED FORWARD:$$

$$\tau_{QTM}^{-1} \text{ is the QTM}$$

$$rate, \tau_{QTM} \text{ is the}$$

$$QTM time$$

- Most commonly, we observe multiple sequential transitions
- For Ln SMMs four sequences are common:
 - 4. Raman mechanism.
 This has a power law temperature dependence.
 This form makes many assumptions about the phonons involved.

$$\tau^{-1} = CT^n$$

FEED FORWARD: CT^n describes the Raman *rate*, not the *time*! $\tau \neq CT^n$

• Therefore, generally, we have the combined effect of all three

$$\tau^{-1} = \tau_0^{-1} \exp\left[\frac{-U_{eff}}{k_B T}\right] + \tau_{QTM}^{-1} + CT^n$$

• Measure the temperature dependence of the relaxation rate

• Orbach linear

• Raman linear

High-temperature SMMs?

• So Dy^{III} SMMs can have HUGE barriers....are there any drawbacks?

[1] Y.-S. Ding et. al., Angew. Chem. Int. Ed., 2016, 55, 16071

The magic molecule

• Dr David Mills' group (Manchester):

[1] C. Goodwin et al., Nature, 2017, 548, 349

Magnetic hysteresis

[1] C. Goodwin et al., Nature, 2017, 548, 349

Magnetic relaxation

[1] C. Goodwin et al., Nature, 2017, 548, 349

Ab initio relaxation rate

[1] C. Goodwin et al., Nature, 2017, 548, 349

Ab initio relaxation pathway

C. Goodwin et al., Nature, 2017, 548, 349

Ab initio relaxation pathway

C-H groups of Cpttt

C. Goodwin et al., Nature, 2017, 548, 349

Ab initio relaxation pathway

C-H groups of Cpttt

C. Goodwin et al., Nature, 2017, 548, 349

Problem set:

- 1. Consider the plot of magnetic relaxation rates for a lanthanide SMM given below:
 - a) How many different relaxation mechanisms are in operation?
 - b) Identify which relaxation mechanisms give rise to the different sections.
 - c) What mechanism dominates relaxation at 100 K?

