CHEM40111/CHEM40121 Molecular magnetism 7 Magnetic resonance imaging

The University of Manchester

Nick Chilton

Room 7.20 T: 54584 E: nicholas.chilton@manchester.ac.uk

Course Overview

 Fundamentals Motivation Origins of magnetism Bulk magnetism 	 5 Single-molecule magnets I Single-molecule magnets Electrostatic model
 2 Quantum mechanics of magnetism Zeeman effect Statistical mechanics Magnetisation Magnetic susceptibility 	 6 Single-molecule magnets II Measuring magnetic relaxation Relaxation mechanisms Latest research
 3 Magnetic coupling • Exchange Hamiltonian • Experimental measurements • Vector coupling 	 7 Magnetic resonance imaging Paramagnetic NMR Magnetic resonance imaging Latest research
 4 Magnetic anisotropy 2ero-field splitting Impact on properties Lanthanides Spin-orbit coupling 	 8 Quantum information processing Quantum information DiVincenzo criteria Latest research Question time

Intended learning outcomes

- 1. Explain the origin of magnetism arising from electrons in atoms and molecules using formal quantum-mechanical terms
- 2. Compare and contrast the electronic structure of metal ions in molecules and their magnetic properties, for metals across the periodic table
- 3. Select and apply appropriate models and methods to calculate molecular magnetic properties such as magnetisation, magnetic susceptibility and paramagnetic NMR shift
- 4. Deconstruct topical examples of molecular magnetism including single-molecule magnetism, molecular quantum information processing and MRI contrast agents

Reminder: NMR

- Nuclear spin states are split in a magnetic field
 - This is *exactly* the same Zeeman effect as for electrons!
 - Just that nuclear magnetism is *a lot* smaller!

• Apply radio waves at the right energy and the nuclear spin can flip

Reminder: NMR

- The operating frequency of an NMR spectrometer (400 MHz, 600 MHz, etc.) is roughly the frequency needed to flip ¹H nuclei for a given field
 - Higher frequency, bigger magnet!
- But all ¹H nuclei are not the same in a molecule, so require slightly different frequencies
 - NMR applies a pulse of that is say 600 MHz \pm 0.03 MHz to catch all of them
- The spectrum is simply "what frequency flips each proton"?

- Most of the NMR you will have done is on diamagnetic molecules
- Anyone who has tried NMR on something paramagnetic usually doesn't say nice things...
- Any ideas why?

Putting a little magnet *right next to* the nucleus!

- The paramagnetic ion has two effects:
- 1. The local magnetic field is different, thus the resonance frequency changes
 - the proton is *shifted* in the spectrum, sometimes dramatically!
- 2. The relaxation rate of the nuclear spin changes
 - this is the same relaxation rate as for SMMs, but for nuclei
 - this can make the peaks very broad

• The total chemical shift is therefore:

$$\delta = \delta_{dia} + \delta_{para}$$

• δ_{para} has two parts:

 $\delta_{contact} + \delta_{pseudo-contact}$ δ_{para}

Due to the "contact" of spin density with the nucleus.

Generally small

Due to dipolar or throughspace magnetic field.

Often dominant

• If the pseudo-contact term dominates, it can be calculated:

Ζ Η Μ

$$\delta_{PCS} = \frac{\chi_z - \chi_{av}}{2N_A} \frac{3\cos^2\theta - 1}{r^3}$$

• Magnetic susceptibility can be anisotropic:

$$\chi_{av} = \frac{\chi_x + \chi_y + \chi_z}{3}$$

[1] I. Bertini, Prog. Nucl. Magn. Reson. Spectrosc., 2002, 40, 249.

• If the pseudo-contact term dominates, it can be calculated:

$$\delta_{PCS} = \frac{\chi_z - \chi_{av}}{2N_A} \frac{3\cos^2\theta - 1}{r^3}$$

- This is *very* useful:
 - If you know χ and δ_{PCS} (can be measured independently), then you can calculate the relative position of the proton (θ and r)
 - Structural determination of molecules in solution!
 - Protein conformations and dynamics!

$$- \underline{\text{Units}}: \chi \to cm^3 \ mol^{-1} \qquad r \to m \qquad \delta_{PCS} \to ppm$$

MRI

- Aside from the paramagnetic shift, is the change in relaxation rates useful?
 - Yes! MRI scans are whole-body 3D NMR spectra

• Shades are not actually the shifts, but are the relaxation rates

MRI

• Some common clinical MRI contrast agents:

What's new in MRI contrast

• Collaboration with Prof. David Parker (Durham):

 $L^1 = 1,4,7$ -tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-tacn $Ln = Tb^{III}, Dy^{III}, Ho^{III}, Er^{III}, Tm^{III}, Yb^{III}$

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Anomalous behaviour of [DyL¹]

• Dy(III) complex shows an unexpected solvent dependence:

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Calculation of δ_{PCS}

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166; [2] O. A. Blackburn, et al., Angew. Chem. Int. Ed., 2015, 54, 10783.

Calculation of δ_{PCS}

		•	M06/SMD M06/PCM BP86/SMD	
$\frac{3\cos^2\theta-1}{r^3}$	M06/SMD (×10 ²⁷ m ⁻³)	M06/PCM (×10 ²⁷ m ⁻³)	BP86/SMD (×10 ²⁷ m ⁻³)	RSD
руН3	-4.823	-4.945	-4.925	1%
pyH4	-3.830	-3.808	-3.666	2%
pyH5	-4.426	-4.173	-3.750	8%
	So is χ h	nypersensitive t	o the structure?	

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Hypersensitivity of χ_{ax}

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Hypersensitivity of χ_{ax}

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Determine solution structure from δ_{PCS}

[1] M. Vonci et al., J. Am. Chem. Soc., 2017, 139, 14166.

Problem set:

1. Given the structural coordinates of the labelled proton below from single-crystal X-ray diffraction and its paramagnetic NMR shift, determine the axiality of the magnetic susceptibility of the complex, $\chi_z - \chi_{av}$. Recall that $\delta_{PCS} = \frac{\chi_z - \chi_{av}}{2N_A} \frac{3 \cos^2 \theta - 1}{r^3}$.

