
1

Table of Contents

License ... 2

1. Introduction .. 3

Python library dependencies. ... 3
Program’s workflow. ... 3
Parameter error definition. ... 4

2. User Guide ... 5

AC module. .. 5
Waveform module. ... 8

DC module. .. 10
RelaxationProfile module. ... 12

3. Examples with the executable version ... 14

Well-behaved data. .. 14

4. Examples with the command line version ... 19

Well-behaved data. .. 19

AC data measured with very small temperature steps: “--round” functionality. 19
AC data with one and two peaks in the Cole-Cole plots: “--select_T” functionality. 20
External field was not stable during AC collection: “--round_field” functionality. 21

I want to fit the relaxation profile of 𝜏 values coming from AC and DC experiments. 21

5. Using Anaconda to run CC-FIT2.py .. 23

Installing Anaconda. .. 23
Running CC-FIT2.py from Anaconda prompt. .. 23

2

License

CC-FIT2

Daniel Reta and Nicholas F. Chilton

email: danielreta1@gmail.com or nfchilton@gmail.com

This document is part of CC-FIT2.

CC-FIT2 is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

CC-FIT2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along with CC-FIT2.

If not, see <http://www.gnu.org/licenses/>.

We request that any results obtained through the use of CC-FIT2 are accompanied by the

following reference:

 D. Reta and N. F. Chilton, Phys. Chem. Chem. Phys., 2019, 21, 23567.

mailto:danielreta1@gmail.com
mailto:nfchilton@gmail.com

3

1. Introduction

The CC-FIT2 program is a simple tool for the i) fitting of AC susceptibilities using the

(generalised) Debye model, ii) extraction of AC susceptibilities from waveform data, iii)

fitting of DC magnetisation decays using (stretched) exponentials, iv) extraction of magnetic

relaxation times with associated uncertainties and v) fitting the temperature dependence of

these data accosting for uncertainties in the underlying relaxation times.

This manual does not contain a comprehensive overview of the theory of relaxation

dynamics; please consult Molecular Nanomagents (Gatteschi, Sessoli and Villain, 2006,

Oxford University Press) and the publication associated with this program (Reta and Chilton,

Phys. Chem. Chem. Phys., 2019, 21, 23567).

Python library dependencies.

CC-FIT2.py has been successfully tested in Python 3.5, 3.6 and 3.7 – the program relies on

the following Python libraries:

• Numpy • Os

• Matplotlib • Glob

• Scipy • Itertools

• Requests • Collections

• Argparse • Warnings

All these are normally included with Anaconda distributions and as such the program should

be ready to use without prior library installation. However, if you have your own Python

installation and are missing some of the libraries, we recommend you use pip to install them.

Program’s workflow.

There are two versions of CC-FIT2; the first is a standalone executable (CC-FIT2.exe) and

the second is a Python script (CC-FIT2.py). Depending on the data to be fitted, the user can

choose the most convenient version (Figure 1). However, note that CC-FIT2.py offers more

functionality and it is therefore recommended. If you are not familiar with running programs

in the command line, we suggest that you download Anaconda to use CC-FIT2.py (see

Section 5).

For clarity, the program prints to screen the undergoing task (while running) and explicitly

records the filenames and folders of the files being saved. For each module (Figure 1), the

program outputs the plots of the fitted data (saved as $Name.png), a text file with the actual

model optimised parameters ($Name_params.out) and a text file with the fitted data ($Name

_fit.out).

https://numpy.org/
https://docs.python.org/3/library/os.html
https://matplotlib.org/
https://docs.python.org/3/library/glob.html
https://scipy.org/
https://docs.python.org/3/library/itertools.html
https://docs.python-requests.org/en/latest/
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/warnings.html

4

Figure 1. Workflow diagram for AC, Waveform, DC and RelaxationProfile modules (a-d),

respectively. The executable version only supports the AC module.

Parameter error definition.

For both the fitting of the (generalised) Debye function, magnetisation decays and of the

magnetic relaxation rates, the parameter errors 𝜎𝑖 are calculated on the basis of the Jacobian

matrix obtained from the optimisation algorithm 𝐽,̿ Equations 1 and 2.

𝜎𝑖 = √𝐶�̿�𝑖
(1)

𝐶̿ =
(𝐽�̿�𝐽)̿

−1
𝑅𝑆𝑆

𝑁 − 𝑘

(2)

where 𝐶̿ is the covariance matrix

𝑅𝑆𝑆 is the residual sum of squares at the minimum

𝑁 is the number of data points

𝑘 is the number of variables

5

2. User Guide

The standalone executable (CC-FIT2.exe) can be run by simply double-clicking it and

providing the raw ac.dat file. The command line version (CC-FIT2.py) offers more

functionality and can be run under four distinct modes: AC, Waveform, DC or

RelaxationProfile (Figure 1). Each mode has its own arguments, detailed below.

AC module.

The input file for this option is the raw ac.dat as generated by the SQUID and only positive

susceptibility values are parsed. If the data has been measured under several applied magnetic

fields, the program will proceed one field at a time (Figure 1a) – however, the program will

not work if the data contains duplicates, i.e., points measured at the same field,

temperature and frequency. The program fits both the in-phase and out-of-phase

susceptibilities simultaneously using either the Debye model, the generalised Debye model,

or a combination of two generalised Debye functions (the user will be asked interactively to

choose the model). Temperatures without a clear peak in the out-of-phase AC signal are

automatically discarded as these do not allow accurate extraction of the relaxation time.

Following the AC fitting, the magnetic relaxation times are plotted with their uncertainties

according to the protocol in our paper (Phys. Chem. Chem. Phys., 2019, 21, 23567).

The expected arguments for this option are defined in Table 1 and can be accessed with

“python CC-FIT2.py AC -h”.

After fitting to a (Generalised) Debye model, the program will automatically output

• A plot with the 𝜒′ and 𝜒′′ components against frequency, at varying temperature.

• A plot of 𝜒′′ against 𝜒′ (Cole-Cole), at varying temperature.

• A *_fit.out text file with the fitted results, so the user can plot the data independently.

• A *_params.out text file reporting the optimised parameters and associated errors

(Eqs 1 and 2). For a Generalised model, 𝜏𝑙𝑛
𝐸𝑆𝐷−𝑢𝑝/𝑙𝑤

 are the upper (up) and lower (lw)

estimated standard deviations (ESD) from the log-normal (ln) distribution on 𝜏, i. e.,

the vertical bars shown in the relaxation profile plots.

After fitting the relaxation profile, the program will automatically output

• A plot of the fitted data (𝜏−1 vs T, log-log scale)

• A plot of the residuals (𝜏𝑒𝑥𝑝
−1 − 𝜏𝑓𝑖𝑡

−1 vs T).

• A *_fit.out text file with the fitted results, so the user can plot the data independently.

• A *_params.out text file reporting the optimised parameters and associated errors.

6

Table 1. Mandatory and optional argument for CC-FIT2.py AC module.

Mandatory args. Description

filename File containing the AC raw data, directly obtained from SQUID.

mass Sample mass (mg)

MW Sample molecular weight (g/mol)

Optional args. Description

-h Print help documentation

--process (Option)

Controls the flow of the program.

Options:

 “plot” shows the raw data only. No fitting is performed.

 “susc” fits the AC data to extract 𝜏 only.

 “all” fits both AC data and relaxation profile.

Default:

 “all”.

--discard_off Disables the option that filters out the AC fits with no peak.

--susc_vs_T Plot and save 𝜒′, 𝜒′′ vs temperature..

--round (N)

Specifies the rounding level used to group the temperature datasets.

If the data contains very closely spaced temperature points and the

program struggles to separate them appropriately, use N = 1.

Conversely, if the temperature was not very stable and you would

like to group more approximate temperatures together, use N = 3.

See section 4.2 for an example.

Default:

 N = 2.

-- round_field (N)

Decimal rounding applied to the DC field employed in experiment.

Useful to avoid artificial data separation in case there is noise in the

recorded field.

Default:

 N = 2.

--select_T

Specifies manual selection of temperatures to use in the fitting of the

(generalised) Debye model.

See section 4.3 for an example.

--sigma (N)

Confidence interval employed in the log-norm distribution.

Default:

 N = 1.

--data_pointer (str)

String to locate where to start reading in the ac.dat file. This will

depend on the specifics of your ac.dat file.

Default:

 “[Data]”.

--filter_flats
Tells the program to discard practically flat 𝜒′′ vs 𝜈 data sets.

--error_fit (N)

Optional threshold to define flat 𝜒′′ vs 𝜈 for the “-- filter_flats”

option. A lower value of N is stricter as to classifying a flat profile.

Default:

 N = 1E-06.

7

--verbose

Print to screen extra information on how the file is being read and

statistical results.

Different SQUID magnetometers use different formats to write the results to the ac.dat file.

Currently, CC-FIT2 implements a series of valid options for each property to be read (Table

2). Their relative order does not matter, but your raw ac.dat file should present one of the

implemented headers for each property – note that any combination is accepted. Otherwise,

CC-FIT2 will prompt an error and refer you to this manual. If that is the case, please contact

us so we can add your format to the CC-FIT2 library.

Table 2. Implemented ac.dat headers. Any combination is allowed, but an implemented header must

be present for each property indicated.

Property Headers

Field Field (Oe) Magnetic Field (Oe)

Temperature Temperature (K)

Frequency Wave Frequency (Hz) AC Frequency (Hz)
Frequency

(Hz)

𝝌′ m' (emu) AC X' (emu/Oe) M' (emu)

𝝌′′ m" (emu) AC X" (emu/Oe)
AC X”

(emu/Oe)
M'' (emu)

Drive Amplitude Drive Amplitude (Oe) AC Drive (Oe)
Amplitude

(Oe)

8

Waveform module.

This module implements the methodology developed in Phys. Chem. Chem. Phys., 2019, 21,

22302-22307 and is consistent with SuperMatlab.

The expected arguments for this option are defined in Table 3 and can be accessed with

“python CC-FIT2.py Waveform -h”.

After performing the discrete Fourier transforms, the program will automatically output

• A $NAME_toccfit.dat file containing the extracted AC susceptibilities. This file can

be directly passed to the AC module.

• A plot of the extracted susceptibilities. Note this plot is not saved automatically.

Table 3. Mandatory and optional argument for CC-FIT2.py Waveform.

Mandatory args. Description

filename(s)

SQUID file(s). It supports shell-style wildcards.

For instance, use “*.dat” to read all files with that extension.

Or, say you have Sample_10K_freq1.dat, Sample_12K_freq3.dat, etc,

you could use “Sample_*K_freq*.dat”.

Optional args. Description

-h Print help documentation

--time_col (N)

Column number used to read “Time stamp (s)” values.

Default:

 2.

--temp_col (N)

Column number used to read “Temperature (K)” values.

Default:

 3.

--field_col (N)

Column number used to read “Field (Oe)” values.

Default:

 4.

--moment_col (N)

Column number used to read “Moment (emu)” values.

Default:

 5.

--field (N)

Central field value used to measure waveform data.

Default:

 0.

--data_pointer (str)

String used to locate data in filename(s).

Default:

 “[Data]”.

--field_window

(N M)

Min max field values (Oe) used to define a waveform block (Figure 2).

Default:

 -0.5 0.5

--show Show individual Fourier transformed plots for each frequency.

https://github.com/RinehartGroup/super-matlab

9

Figure 2. Graphical representation of data parsing. Consecutive data points that fall within the --

field_window values are discarded.

10

DC module.

The input file for this option is not the raw file generated by the SQUID. See Table 4 for the

expected format. The program fits the time-dependent moment of the sample using either a

single or a stretched exponential function (Equation 3a and 3b). For each case, the user can

specify how to treat the value of the equilibrium magnetisation (𝑀𝑒𝑞, see Table 5). Following

the decays’ fitting, the magnetic relaxation times are plotted with their uncertainties. In the

same way the 𝛼 parameter in the generalised Debye model can be associated with an

uncertainty in 𝜏, the 𝛽 parameter in the stretched exponential function also relates to a

distribution of 𝜏 and consequently to an intrinsic uncertainty on the value. These uncertainties

are calculated according to the protocol in our paper (SI Section 5 in J. Am. Chem. Soc. 2019,

141, 50, 19935–19940).

𝑀(𝑡) = 𝑀𝑒𝑞 + (𝑀0 − 𝑀𝑒𝑞)𝑒(−𝑡
𝜏⁄) (3a)

𝑀(𝑡) = 𝑀𝑒𝑞 + (𝑀0 − 𝑀𝑒𝑞)𝑒(−𝑡
𝜏⁄)𝛽

 (3b)

The input_file for this mode can contain as many fields and temperatures as wanted, but those

must be arranged as follows (Table 4).

Table 4. DC input_file format. Parentheses denote variables; “Field = ”, “T = ”, “time” and “moment”

are required as shown; [Data] indicates the section where the actual data is expected.

Field = (FIELD1) Oe

T = (T1) K

time moment

[Data] [Data]

T = (T2) K

time moment

[Data] [Data]

Field = (FIELD2) Oe

T = (T1) K

time moment

[Data] [Data]

The expected arguments for this option are defined in Table 5 and can be accessed with

“python CC-FIT2.py DC -h”.

11

Table 5. Mandatory and optional argument for CC-FIT2.py DC.

Mandatory args. Description

filename File containing the DC magnetisation decays. See Table 4 for details.

Optional args. Description

-h Print help documentation

--process (Option)

Controls the flow of the program.

Options:

 “decays” fits only the magnetisation decays to extract 𝜏;

 “all” fits both the magnetisation decays and the relaxation profile.

Default:

 “all”.

--model (Option)

Selects the exponential function used to fit the decays.

Options:

 “single” uses a single exponential function.

 “stretched” used a stretched exponential function.

Default:

 “single”.

--M_eq (Option)

Sets the equilibrium magnetisation value to be used.

Options:

 “exp” M_eq is set by the last measured value of the data set and not

 used as a parameter in the fitting routine

 “free” M_eq is left free and passed as an argument to the fitting

 function. Use in case the equilibrium has not been reached.

 float M_eq is customarily defined and not used as a parameter in

 the fitting routine. Note that within this option, the user must

 provide a number.

 “multiple” Indicate if different Meq values are to be applied to

 different temperatures. A list of values ordered by

 increasing temperature will be read from

 " Multiple_Meq_{}Oe.txt" file in the current directory,

 where {} is the measured field.

 File format: first line with the headers T Meq.

Default:

 “exp”.

--guess [N1, N2]

𝜏 and (𝛽) initial guess passed to the model function.

Default:

 400 (0.95).

--discard (N)

Number of data points measured under a saturating magnetic field that

won’t be read from each magnetisation decay set.

Default:

 N = 2.

--hide_plots Do not show the individual magnetisation decay plots.

--save_plots Save the individual magnetisation decay plots.

--verbose
Print to screen extra information on how the file is being read and

statistical results.

12

RelaxationProfile module.

The input file for this option contains the temperature or field dependence of the relaxation

times (𝜏) (see Table 7 for expected file format).

The expected arguments for this option are defined in Table 6 and can be accessed with

“python CC-FIT2.py RelaxationProfile -h”.

After fitting the relaxation profile, the program will automatically output

• A plot of the fitted data (𝜏−1 vs T, log-log scale)

• A plot of the residuals (𝜏𝑒𝑥𝑝
−1 − 𝜏𝑓𝑖𝑡

−1 vs T).

• A *_fit.out text file with the fitted results, so the user can plot the data independently.

• A *_params.out text file reporting the optimised parameters and associated errors.

Table 6. Mandatory and optional argument for CC-FIT2.py RelaxationProfile.

Mandatory args. Description

input_file
File containing the temperature-dependent relaxation times. See

Table 7 for details.

Optional args. Description

-h Print help documentation

--process (Option)

Controls the flow of the program.

Options:

 “tau_vs_T” fits the temperature dependence of relaxation times 𝜏.

 “tau_vs_H” fits the field dependence of the relaxation times 𝜏.
Default:

 “tau_vs_T”.

--infield Enables a Direct term (eq 5), relevant only if --process tau_vs_T

--sigma (N)

Confidence interval employed in the log-norm distribution. Relevant

only for the 𝜏 from AC.
Default:

 N = 1.

--verbose
Print to screen extra information on how the file is being read and

statistical results.

The input_file for this mode can contain data from AC, DC and/or both and the first column

can be temperature (--process tau_vs_T) or field (--process tau_vs_H). The grey columns

indicate that this data is optional, as its use depends on the fitting function employed. The

remaining elements are mandatory.

13

Table 7. RelaxationProfile input_file format.

AC

T or Field tau tau_err alpha

[Data] [Data] [Data] [Data]

DC

T or Field tau tau_err beta

[Data] [Data] [Data] [Data]

For the temperature dependence of the relaxation times, the following models are available:

• In the absence of an applied field, the relaxation profile can be modelled as a

combination of Orbach, Raman and Quantum Tunnelling of Magnetisation terms,

respectively.

𝜏−1 = 10−𝜏0𝑒
(

−𝑈𝑒𝑓𝑓
𝑇

⁄)
+ 10𝐶𝑇𝑛 + 10−𝜏𝑄𝑇𝑀 (4)

• For in-field data, QTM is substituted by a Direct term. Note that the term A [s-1K-1]

encompasses implicitly the effect of the applied field, as the employed expression

does not know about it. Divide by the actual employed field to obtain [s-1K-1T-1].

𝜏−1 = 10−𝜏0𝑒
(

−𝑈𝑒𝑓𝑓
𝑇

⁄)
+ 10𝐶𝑇𝑛 + 10𝐴𝑇 (5)

For the field dependence of the relaxation times, CC-FIT2 has the following models

implemented, as derived in Phys. Rev. B 101, 174402 (2020).

• For data collected at a temperature that falls within the QTM regime in the zero-field

regime, the relaxation profile can be modelled as a field-dependent QTM, plus a

Raman-II and a constant term, respectively. A “constrained” option is also available,

where the 𝜏𝑄𝑇𝑀 and 𝐶𝑡 parameters are kept fixed during the fitting.

𝜏−1 =
10−𝜏𝑄𝑇𝑀

1 + 10−𝜏𝑄𝑇𝑀(𝐻)𝐻𝑝
+ 10𝐶𝐻𝑚 + 10𝐶𝑡 (6)

• For data collected at a temperature that falls within the Raman regime in the zero-field

regime, the relaxation profile can be modelled as a Brons-Van-Vleck term weighted

with a Raman-II (7) or a field-independent constant term (8). A “constrained” option

is also available, where the 𝐶𝑡 parameter is kept fixed during the fitting.

𝜏−1 =
1 + 10𝑒𝐻2

1 + 10𝑓𝐻2
∙ (10𝐶𝐻𝑚) (7)

𝜏−1 =

1 + 10𝑒𝐻2

1 + 10𝑓𝐻2
∙ (10𝐶𝑡) (8)

14

3. Examples with the executable version

Well-behaved data.

Suppose the user has measured the ac response of a sample under zero-field, at different

temperatures, using at each point a different range of wave frequencies, and wants to model

the data. The steps to follow to do that with CC-FIT2 are the following, assuming that the

data is in a file named “ac.ac.dat”:

- Double click the CC-FIT.exe logo. This will prompt a “Select file” box dialog.

Browse your computer to the folder where your “ac.ac.dat” is, and open it.

15

- Another box will appear asking for the mass (mg) and molecular weight (g/mol) of

your sample. Type in the values and press “Continue”.

- A Cole-Cole plot showing the raw data will appear. In the upper part, there are some

interactive buttons that can be used to indicate what model is to be used to fit the data.

Select the appropriate one.

16

- Two new plots appear, showing the results of the fitting: the Cole-Cole plot and the

susceptibility components. Note that the program discards temperature points for

which a maximum is not observed; this information is only reported in the command

line version (see below).

- To continue, close these windows. You do not need to save the figures, as they are

automatically saved to the same folder where the data file is. Additionally, two files

are created: one contains the optimal parameters of the fit for each temperature, and

the other contains the fitted model functions. Once the figures are closed, a new

window showing the relaxation profile of the extracted relaxation times is presented.

Once again, the interactive buttons on the left allow you to choose a model to fit the

temperature dependence of the data. Just click one of them:

17

- Choosing a model function produces another window showing you an initial guess to

fit the data, with interactive sliders where you can change the parameters if the initial

guess is too far off:

- If you think the chosen model function is not an appropriate choice for your data, you

can press the “Change model” button, taking you back to selection screen. Once you

are happy with the initial guess of your chosen model function, press “Fit” to perform

a fit of the relaxation profile, which yields the final results:

18

Note that the above discussion is not limited to data collected under the same field – if the

data file contains data measured under two or more external fields, the program will ask you

to do the same at each external field employed.

19

4. Examples with the command line version

Well-behaved data.

If a user was to use the command line version instead of the executable with the same data

file in section 3, they will obtain the same results. However, using the command line version

becomes handy in the case of more complicated datasets, as it offers more control over the

data treatment.

As indicated in Section 2, CC-FIT2.py can be used in four modes:

python CC-FIT2.py AC <filename> <mass> <MW>

python CC-FIT2.py AC < filename(s)>

python CC-FIT2.py DC < filename >

python CC-FIT2.py RelaxationProfile < filename >

AC data measured with very small temperature steps: “--round”

functionality.

Sometimes the sample would present out-of-phase magnetic susceptibility only in a narrow

region of temperatures, and therefore the data is collected with very small temperature steps

to get as much information as possible. The program may mistakenly treat all the data as

belonging to a single temperature point. This behaviour can be fixed using the --round

command.

Using the -v command will print to screen what the program is doing, making it easier to

track down any possible issue. For instance, for a sequence that has measured these

temperatures:

[1.794347, 1.798661, 1.799994, 1.800523, 1.800567, 1.800696, 1.801384, 1.801602,

1.802653, 1.803176, 1.804246, 1.804882, 1.893796, 1.896328, 1.898486, 1.900279,

1.901154, 1.901297, 1.901564, 1.90289, 1.902917, 1.903035, 1.903924, 1.906677, 1.998204,

1.999513, 1.999818, 2.000119, 2.000131, 2.000163, 2.000182, 2.000237, 2.000276,

2.000551, 2.00121, 2.001292]

The default --round value (N = 2) will place all these 36 points in a single set of average

temperature of ca. 1.9 K. The program will subsequently fail because there are not as many

associated frequencies with this data.

However, if the program is executed with “--round 1”, these temperatures are grouped into

three different sets with 12 points each, corresponding to the averages of ca. 1.8 K, 1.9 K and

2.0 K.

Example of usage:

python CC-FIT2.py AC <filename> <mass> <MW> --round <value:{1, 2, 3, …}>

20

AC data with one and two peaks in the Cole-Cole plots: “--select_T”

functionality.

By calling the program with the --select_T option, you can access different sets of

temperature ranges, which is convenient in case you cannot apply the same model function

across all temperatures.

Say that you have used --select_T, then the window shown below will appear. Here, the

temperature points between 26 and 40 K show two clear peaks, whereas the others only show

one. The command line prompts you to indicate the temperatures you want to model,

enabling to separate this single data file into two different sets; note that this would have to

be repeated for the second set.

The available temperatures are printed to the command line and the user is asked to indicate

which ones should be fitted. These should be given in the same format shown on the

command line, i.e. separated by commas and in order of increasing temperature.

Example of usage:

python CC-FIT2.py AC <filename> <mass> <MW> --select_T

21

External field was not stable during AC collection: “--round_field”

functionality.

Sometimes the recorded external field jumps slightly around a central value, even if it is set

to a fixed one. If this happens, the program will interpret that there are multiple data sets

measured at different fields. To avoid this, the user can overwrite the field value read

internally by the program --round_field.

Example of usage:

python CC-FIT2.py AC <filename> <mass> <MW> --round_field <value:{0, 1, 2, …}>

I want to fit the relaxation profile of 𝜏 values coming from AC and

DC experiments.

Due to the limited range of AC frequencies in typical MPMS or PPMS magnetometers

(typically ca. 0.1-10,000 Hz), the relaxation times (𝜏) at the lower end of temperatures are

normally not accessible. A common practice is then to employ standard direct current (DC)

techniques to measure magnetisation decays and extract 𝜏 at a given temperature, where the

time-evolution of the sample’s magnetisation is recorded. Then, these 𝜏 values can be merged

to those obtained from AC to report the full relaxation profile of the sample

Example of usage:

python CC-FIT2.py RelaxationProfile <filename>

For instance, using the data below:

AC

T tau tau_err alpha

64.00 1.34E+00 1.49E-01 4.68E-02

66.00 6.85E-01 4.29E-02 4.54E-02

90.00 5.84E-04 1.60E-05 8.34E-02

92.00 3.85E-04 1.44E-05 8.37E-02

94.00 1.93E-04 8.52E-06 1.11E-01

96.00 1.56E-04 1.62E-05 6.19E-02

DC

T tau tau_err beta

2.0 1.16E+03 1.49E-01 5.97E-01

2.5 1.00E+03 4.29E-02 6.66E-01

3.2 8.27E+02 1.60E-05 7.19E-01

22.0 8.64E+01 1.44E-05 5.66E-01

24.0 7.62E+01 8.52E-06 5.65E-01

22

Note that the presence of the columns “alpha” and “beta” depends on the model functions

that have been used to fit the AC and DC data, respectively, and as such they are optional. If

either of those columns are not present in the file, tau_err values will be used to define the

errors on 𝜏.

With this data, one would obtain a much more complete relaxation profile, with enough data

points to statistically sample each of the Raman and Orbach regimes.

23

5. Using Anaconda to run CC-FIT2.py

Installing Anaconda.

Anaconda is a distribution of Python that simplifies the usage of different modules required

to run CC-FIT2. Go to the Anaconda website and download it. This tutorial might help you in

the process of installing it.

Running CC-FIT2.py from Anaconda prompt.

When typing Anaconda in the Windows search bar, a Terminal will appear. You will be

executing CC-FIT2_cmd.py from here. There are many ways you can make a python script

callable from any directory in your computer, but they are system-dependent and a bit

involved. For that reason, we recommend that you do the following, which despite not being

the most efficient approach, should work.

- In your Desktop, create a folder called CCFIT and place the CC-FIT2.py file in there.

- Open the command prompt of Anaconda by typing “Anaconda” in the search bar.

- In the terminal that just opened, navigate to the folder where you have the data that

you want to treat. To change directory in the terminal, type “cd folder” where folder is

the name of the folder you want to change to.

- Once you are in the correct folder, type:

“python C:\Users\$YourUserName\Desktop\CCFIT\CC-FIT2.py -h”

Where “$YourUserName” is a variable unique to your computer and needs to be

specified. For instance, in my laptop this is “C:\Users\daniel”, so

“$YourUserName=daniel. If everything works you should see printed to screen the

available options, and then you are good to go.

https://www.anaconda.com/products/individual
https://www.datacamp.com/community/tutorials/installing-anaconda-windows#comment-4642

