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License 
 

 
 

PHI 
Nicholas F. Chilton 

email: nfchilton@gmail.com 
 

This document is part of PHI. 
 

PHI is free software: you can redistribute it and/or modify it under the terms of the GNU 
General Public License as published by the Free Software Foundation, either version 3 of the 

License, or (at your option) any later version. 
 

PHI is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; 
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A 
PARTICULAR PURPOSE.  See the GNU General Public License for more details. 

 
 You should have received a copy of the GNU General Public License along with PHI. If not, 

see <http://www.gnu.org/licenses/>. 
 

We request that any results obtained through the use of PHI are accompanied by the 
following reference: 

 
 N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and K. S. Murray, 

J. Comput. Chem., 2013, 34, 1164 – 1175.  
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1. Introduction 
 

 
PHI is a computer package designed for the calculation and interpretation of the magnetic 
and spectroscopic properties of paramagnetic compounds. While the use of 
phenomenological Hamiltonians is not at all a new concept, PHI was conceived as a freely 
accessible and cross-platform program with wide functionality, new approaches and 
increased performance. 
 
The program was designed, primarily, for the treatment of systems containing orbitally 
degenerate and strongly anisotropic ions, through the inclusion of Spin-Orbit (SO) coupling 
and Crystal-Field (CF) effects. Thus, PHI was written with the explicit inclusion of orbital 
angular momentum. The intra-atomic coulomb interaction is treated with the Russell-
Saunders (or LS) formalism, such that only the total spin and the total orbital moments of the 
ground term are employed. Whilst designed for anisotropic calculations, PHI is also 
optimized for calculations involving magnetically isotropic or spin-only systems. 
 
Another major design feature was to employ the Zeeman term in the Hamiltonian such that 
non-perturbative field dependent magnetic properties could be calculated. This also facilitates 
the calculation of field dependent properties such as Electron Paramagnetic Resonance (EPR) 
and Zeeman spectra. 
 
One of the main goals is for the program to be approachable by non-experts; a goal that has 
been facilitated though the use of plain text input files and a Graphical User Interface (GUI) 
providing real-time visualization of data.  
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2. Theoretical Background 
 

 

2.1 Notation 
 
This manual uses the following notation for common mathematical quantities. 
 

Table 2.1.1 – Mathematical notation 

Quantity Symbol 
Scalar 𝐴 
Vector 𝐴 

Vector component 𝐴𝛼 
Matrix 𝐴̿ 

Matrix component 𝐴𝛼,𝛽 
Operator 𝐴̂ 

Vector operator 𝐴⃑̂ 
Vector operator component 𝐴̂𝛼 

 

2.2 Theory 
 
For molecular ensembles in thermodynamic equilibrium, the underlying postulate is that each 
molecule possesses an electronic structure given by solution to the time independent 
Schrödinger equation, Equation 2.2.1. The action of the Hamiltonian operator, 𝐻�, on the 
wavefunction, Ψ, gives the energy of the state, 𝐸. The electronic wavefunction is usually 
separated into radial and angular parts and in the domain of spin Hamiltonians, the angular 
part is solved explicitly while the radial integrals become parameters to be determined. The 
Hilbert space for an individual molecule is constructed from the angular momentum basis 
states for each of 𝑁 sites using either �𝑆𝑖,𝑚𝑆𝑖〉, �𝐽𝑖 ,𝑚𝐽𝑖

〉 or �𝐿𝑖 ,𝑚𝐿𝑖, 𝑆𝑖,𝑚𝑆𝑖〉 representations, 
where 𝑖 ∈ 𝑁. Note: only a single term is used to describe each site, i.e. 𝑆𝑖, 𝐽𝑖 or 𝐿𝑖 and 𝑆𝑖 are 
fixed. The total uncoupled basis of the system is the direct product of all the individual basis 
states, Equation 2.2.2. This system is solved by evaluating the matrix elements of the 
Hamiltonian over the basis states and diagonalizing the Hamiltonian matrix. The dimension 
of the Hilbert space and therefore the Hamiltonian matrix is given by Equation 2.2.3. 
 

𝐻�Ψ = 𝐸Ψ                                                               (2.2.1) 
 
|𝐿, 𝑆,𝑚𝐿 ,𝑚𝑆〉 = �𝐿1, 𝑆1,𝑚𝐿1,𝑚𝑆1〉 ⊗ �𝐿2, 𝑆2,𝑚𝐿2,𝑚𝑆2〉 ⊗ … �𝐿𝑖, 𝑆𝑖,𝑚𝐿𝑖,𝑚𝑆𝑖〉, 𝑖 ∈ 𝑁 (2.2.2) 
 

𝑑𝑑𝑑 = �(2𝐿𝑖 + 1)(2𝑆𝑖 + 1)
𝑁

𝑖=1

                                           (2.2.3) 
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The Hamiltonian is composed of operators which act on the angular momentum basis 
functions to yield the matrix elements. The Hamiltonian is split into four components: the SO 
coupling, 𝐻�𝑆𝑆, the exchange coupling,  𝐻�𝐸𝐸, the CF interaction,  𝐻�𝐶𝐶 and the Zeeman effect,  
𝐻�𝑍𝑍𝑍. 
 

𝐻� =  𝐻�𝑆𝑆 +  𝐻�𝐸𝐸 + 𝐻�𝐶𝐶 + 𝐻�𝑍𝑍𝑍                                         (2.2.4) 
 
Spin-orbit coupling 
The SO coupling operator is usually given as Equation 2.2.5, however this first order model 
results in the SO multiplets following the Landé interval rule. This is correctly obeyed by 
ions of low atomic mass, such as the 3d ions, however deviations from the Landé interval rule 
for heavy ions due to term mixing by SO coupling are significant and must be accounted for. 
Thus in PHI, the SO operator is expanded as a power series following the parameterization of 
Karayianis,1 Equation 2.2.6. The sum extends to order 2𝑆𝑖, where 𝑆𝑖 is the total spin of the 
term in question. The coefficients, 𝜆1𝑖, 𝜆2𝑖 and 𝜆3𝑖 were tabulated for the tripositive 
lanthanides by Karayianis, however we have optimized these and included higher orders 
where required,2 Table 2.2.1. 
 

𝐻�𝑆𝑆 = �𝜆𝑖 �𝜎𝑖𝐿��⃑ 𝑖 ⋅ 𝑆⃑̂𝑖�
𝑁

𝑖=1

                                                 (2.2.5) 

 

𝐻�𝑆𝑆 = ��𝜆𝑗𝑖 �𝜎𝑖𝐿
��⃑ 𝑖 ⋅ 𝑆⃑̂𝑖�

𝑗
2𝑆𝑖

𝑗=1

𝑁

𝑖=1

                                            (2.2.6) 

 
where 𝜆𝑗𝑖 are the SO coupling constants 

𝜎𝑖 are the orbital reduction parameters 
 

Table 2.2.1 – Optimized spin-orbit parameters for the triply ionized rare-earths 

Ion 𝝀𝟏 (cm-1) 𝝀𝟐 (cm-1) 𝝀𝟑 (cm-1) 𝝀𝟒 (cm-1) 𝝀𝟓 (cm-1) 𝝀𝟔 (cm-1) 

CeIII 
Ref. 1 640 - - - - - 
Opt. 691 - - - - - 

PrIII 
Ref. 1 390 -4.63 - - - - 
Opt. 421 -5.78 - - - - 

NdIII 
Ref. 1 299 -2.48 0.0475 - - - 
Opt. 326 -2.66 0.0247 - - - 

PmIII 
Ref. 1 251 -1.99 0.0239 0 - - 
Opt. 269 -1.85 0.00977 -0.000920 - - 

SmIII 
Ref. 1 228 -2.16 0.0368 0 0 - 
Opt. 241 -2.34 0.0315 -0.000743 -0.00000883 - 

EuIII 
Ref. 1 214 -3.82 0.147 0 0 0 
Opt. 230 -3.28 0.269 0.000715 -0.00164 -0.000144 
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TbIII 
Ref. 1 -252 -4.50 -0.267 0 0 0 
Opt. -260 0.997 0.223 -0.0402 -0.00685 -0.000267 

DyIII 
Ref. 1 -357 -4.40 -0.121 0 0 - 
Opt. -362 -2.73 -0.221 -0.00655 0.000110 - 

HoIII 
Ref. 1 -497 -7.06 -0.139 0 - - 
Opt. -515 -7.83 -0.121 0.00629 - - 

ErIII 
Ref. 1 -629 -18.2 -0.517 - - - 
Opt. -572 -12.6 -1.85 - - - 

TmIII 
Ref. 1 -875 -123 - - - - 
Opt. -684 -177 - - - - 

YbIII 
Ref. 1 -2910 - - - - - 
Opt. -2957 - - - - - 

 
Exchange coupling 
For both spin-only and orbitally degenerate cases, the exchange Hamiltonian (Equation 2.2.7) 
is parameterized with the complete 𝐽𝚤𝚤��� tensor, Equation 2.2.8. In many cases this can be 
separated into two components; the (an)isotropic exchange (Equation 2.2.9) and the 
antisymmetric exchange (Equation 2.2.10), in which case 𝐽𝚤𝚤��� takes the form of Equation 
2.2.11. While such an approach is commonplace in spin-only situations, the subject of 
magnetic exchange between orbitally degenerate ions is non-trivial and a number of attempts 
have been made to determine an effective operator for such cases.3–7 Currently in PHI, the 
exchange interaction for orbitally degenerate ions follows the treatment of Lines,8 which 
includes only the spin-spin interaction between the true spins in the �𝐿𝑖,𝑚𝐿𝑖, 𝑆𝑖,𝑚𝑆𝑖〉 basis. In 
PHI however, the interaction can also be anisotropic and/or antisymmetric, thus is much 
more general than the original Lines model. The exchange coupling using the Lines approach 
may also be calculated in the �𝐽𝑖 ,𝑚𝐽𝑖

〉 basis when used in conjunction with the lanthanide ions 
in the simple input method (see section 4.3), utilizing a Clebsch-Gordan decomposition. 
 
By default the reference frame of the exchange matrix is coincident with the global 
coordinate system, however this can be rotated such that the anisotropic and antisymmetric 
interactions can be described in simple, local reference frames. 
 
Note that upon swapping the site indices of the exchange Hamiltonian, the exchange tensor 
becomes its transpose, i.e. 𝑆⃑̂𝑖 ⋅ 𝐽𝚤𝚤��� ⋅ 𝑆⃑̂𝑗 = 𝑆⃑̂𝑗 ⋅ 𝐽𝚤𝚤���

𝑇
⋅ 𝑆⃑̂𝑖. 

 
Since version 3.0, nuclear spins can be included using the ****Ion block. In this case, the 
exchange parameters involving nuclear spins correspond to the hyperfine interactions. Note 
that the convention given here also applies to the nuclear spins, which is different to the usual 
hyperfine expression. 
 

𝐻�𝐸𝐸 = −2 � 𝑆⃑̂𝑖 ⋅ 𝐽𝚤𝚤��� ⋅ 𝑆⃑̂𝑗

𝑖,𝑗∈𝑁

𝑖≠𝑗

                                               (2.2.7) 
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𝐽𝚤𝚤��� = �

𝐽𝑖𝑖𝑥𝑥 𝐽𝑖𝑖𝑥𝑥 𝐽𝑖𝑖𝑥𝑥
𝐽𝑖𝑗𝑦𝑦 𝐽𝑖𝑖𝑦𝑦 𝐽𝑖𝑖𝑦𝑦
𝐽𝑖𝑖𝑧𝑧 𝐽𝑖𝑖𝑧𝑧 𝐽𝑖𝑖𝑧𝑧

�                                             (2.2.8) 

 

𝐻�(𝑎𝑎)𝑖𝑖𝑖 = −2 � 𝐽𝑖𝑖𝑥𝑆̂𝑖𝑥𝑆̂𝑗𝑥 + 𝐽𝑖𝑖𝑦𝑆̂𝑖𝑦𝑆̂𝑗𝑦 + 𝐽𝑖𝑖𝑧𝑆̂𝑖𝑧𝑆̂𝑗𝑧

𝑖,𝑗∈𝑁

𝑖≠𝑗

                      (2.2.9) 

 

𝐻�𝑎𝑎𝑎𝑎 = −2 � 𝑑𝑖𝑖 ⋅ �𝑆⃑̂𝑖 × 𝑆⃑̂𝑗�
𝑖,𝑗∈𝑁

𝑖≠𝑗

 

= −2 � 𝑑𝑖𝑖𝑥 �𝑆̂𝑖𝑦𝑆̂𝑗𝑧 − 𝑆̂𝑖𝑧𝑆̂𝑗𝑦� + 𝑑𝑖𝑖𝑦 �𝑆̂𝑖𝑧𝑆̂𝑗𝑥 − 𝑆̂𝑖𝑥𝑆̂𝑗𝑧�+ 𝑑𝑖𝑖𝑧 �𝑆̂𝑖𝑥𝑆̂𝑗𝑦 − 𝑆̂𝑖𝑦𝑆̂𝑗𝑥�
𝑖,𝑗∈𝑁

𝑖≠𝑗

 

(2.2.10) 
 

𝐽𝚤𝚤��� = �

𝐽𝑖𝑖𝑥 𝑑𝑖𝑖𝑧 −𝑑𝑖𝑖𝑦
−𝑑𝑖𝑖𝑧 𝐽𝑖𝑖𝑦 𝑑𝑖𝑖𝑥
𝑑𝑖𝑖𝑦 −𝑑𝑖𝑖𝑥 𝐽𝑖𝑖𝑧

�                                         (2.2.11) 

 
Crystal-field potential 
The CF potential is constructed from spherical harmonics to represent the environment in 
which the spin carrier resides. While twenty-seven terms exist in the full expansion, the 
number required may be reduced as the CF Hamiltonian must be invariant under the 
operations of the point group of the molecule (see below for a brief outline of the rules for 
non-zero parameters). Many approaches have been attempted over the years to determine 
Crystal-Field Parameters (CFPs), such as the Point Charge (PCM),9 Angular Overlap 
(AOM)10,11 and Superposition (SM)12 models, however all have fallen short of consistently 
predicting these parameters. This is because, in reality, the electrostatic CF is inadequate due 
to the overlooked contributions from covalency, non-orthogonality, screening and 
polarization of the orbitals.13 In spite of these criticisms, the CF model succeeds in describing 
experimental results when it is considered a phenomenological Hamiltonian, where the 
resultant parameters have no direct physical interpretation. Given this interpretation and the 
close similarity of the operators (see below), the CF Hamiltonian is also used in PHI to model 
Zero Field Splittings (ZFS) of effective spins. 
 
There are numerous parameterization schemes for the effective CF Hamiltonian and care 
must be taken to avoid confusion. For a good grounding, see Mulak and Gajek13, Hutchings9 
and Rudowicz.14 As PHI constructs the Hamiltonian within a total spin-orbit basis, the 
operator equivalent technique of Stevens et al.15,16 was chosen  as the most efficient method 
for the evaluation of matrix elements, even though the notation is less transparent than others, 
Equation 2.2.12. Here, the definitions of the 𝑂�𝑘

𝑞 operators are consistent with Hutchings,9 
Mulak and Gajek13 and Stevens,16 however for clarity definitions of all the positive and 
negative operators are given below in Table 2.2.2. The operator equivalents themselves are 
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polynomials of angular momentum operators, derived from the tesseral harmonics and PHI 
includes all even, odd, positive and negative orders (𝑞) for the 2nd, 4th and 6th rank (𝑘) 
operators. The rank, 𝑘, is restricted to 𝑘 = 2, 𝑘 = 4 and 𝑘 = 6 as only the ground terms of 
the ground configuration are considered. The use of the negative 𝑞 operators is equivalent to 
the ‘sine’ type operators of Hutchings9 and the ‘imaginary’ CFPs in Wybourne notation.13 
The method relies on the use of the operator equivalent factors, 𝜃𝑘, to relate the total angular 
momentum matrix elements to the single electron matrix elements. These factors have been 
tabulated for the ground multiplets for all lanthanides,17 but not as far as the author is aware 
for the ground terms of the lanthanides; these are now presented in Table 2.2.4. The operator 
equivalent factors are automatically included for the lanthanide ions when using the simple 
input method (****Ion block), however are subsumed by the relevant CFPs in all other cases. 
 
In PHI, the CF Hamiltonian is applied to either the orbital or the total angular momentum 
components of a given centre. That is, if the centre possesses a non-zero orbital moment the 
CF Hamiltonian directly acts on the orbital component as a true CF. However, if the centre 
does not possess an orbital moment, the CF Hamiltonian acts on the effective spin or total 
angular momentum, depending on one’s interpretation of the assigned ‘spin’. Note that the 
orbital reduction parameter, 𝜎𝑖, is only relevant when the CF Hamiltonian is applied to an 
orbital moment directly. 
 

𝐻�𝐶𝐶 = � � � 𝜎𝑖𝑘𝐵𝑘
𝑞
𝑖𝜃𝑘𝑂�𝑘

𝑞
𝑖

𝑘

𝑞=−𝑘𝑘=2,4,6

𝑁

𝑖=1

                                    (2.2.12) 

 
where 𝜎𝑖 are the orbital reduction parameters 

𝐵𝑘
𝑞
𝑖 are the CFPs (𝐴𝑘

𝑞
𝑖
〈𝑟𝑘〉𝑖 in Steven’s notation) 

𝜃𝑘 are the operator equivalent factors 
𝑂�𝑘
𝑞
𝑖 are operator equivalents 

 
Table 2.2.2 – Definition of the Stevens operators 

Operator 

𝑂�2−2 =
−𝑖
2
�𝐿�+

2 − 𝐿�−
2� 

𝑂�2−1 =
−𝑖
4
�𝐿�𝑧�𝐿�+ − 𝐿�−� + �𝐿�+ − 𝐿�−�𝐿�𝑧� 

𝑂�20 = 3𝐿�𝑧
2 − 𝐿�2 

𝑂�2+1 =
1
4
�𝐿�𝑧�𝐿�+ + 𝐿�−� + �𝐿�+ + 𝐿�−�𝐿�𝑧� 

𝑂�2+2 =
1
2
�𝐿�+

2 + 𝐿�−
2� 

𝑂�4−4 =
−𝑖
2
�𝐿�+

4 − 𝐿�−
4� 
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𝑂�4−3 =
−𝑖
4
�𝐿�𝑧 �𝐿�+

3 − 𝐿�−
3� + �𝐿�+

3 − 𝐿�−
3� 𝐿�𝑧� 

𝑂�4−2 =
−𝑖
4
��7𝐿�𝑧

2 − 𝐿�2 − 5� �𝐿�+
2 − 𝐿�−

2� + �𝐿�+
2 − 𝐿�−

2� �7𝐿�𝑧
2 − 𝐿�2 − 5�� 

𝑂�4−1 =
−𝑖
4
��7𝐿�𝑧

3 − 3𝐿�2𝐿�𝑧 − 𝐿�𝑧� �𝐿�+ − 𝐿�−� + �𝐿�+ − 𝐿�−� �7𝐿�𝑧
3 − 3𝐿�2𝐿�𝑧 − 𝐿�𝑧�� 

𝑂�40 = 35𝐿�𝑧
4 − 30𝐿�2𝐿�𝑧

2 + 25𝐿�𝑧
2 + 3𝐿�22 − 6𝐿�2 

𝑂�4+1 =
1
4
��7𝐿�𝑧

3 − 3𝐿�2𝐿�𝑧 − 𝐿�𝑧� �𝐿�+ + 𝐿�−� + �𝐿�+ + 𝐿�−� �7𝐿�𝑧
3 − 3𝐿�2𝐿�𝑧 − 𝐿�𝑧�� 

𝑂�4+2 =
1
4
��7𝐿�𝑧

2 − 𝐿�2 − 5� �𝐿�+
2 + 𝐿�−

2� + �𝐿�+
2 + 𝐿�−

2� �7𝐿�𝑧
2 − 𝐿�2 − 5�� 

𝑂�4+3 =
1
4
�𝐿�𝑧 �𝐿�+

3 + 𝐿�−
3� + �𝐿�+

3 + 𝐿�−
3� 𝐿�𝑧� 

𝑂�4+4 =
1
2
�𝐿�+

4 + 𝐿�−
4� 

𝑂�6−6 =
−𝑖
2
�𝐿�+

6 − 𝐿�−
6� 

𝑂�6−5 =
−𝑖
4
��𝐿�+

5 − 𝐿�−
5� 𝐿�𝑧 + 𝐿�𝑧 �𝐿�+

5 − 𝐿�−
5�� 

𝑂�6−4 =
−𝑖
4
��𝐿�+

4 − 𝐿�−
4� �11𝐿�𝑧

2 − 𝐿�2 − 38� + �11𝐿�𝑧
2 − 𝐿�2 − 38� �𝐿�+

4 − 𝐿�−
4�� 

𝑂�6−3 =
−𝑖
4
��𝐿�+

3 − 𝐿�−
3� �11𝐿�𝑧

3 − 3𝐿�2𝐿�𝑧 − 59𝐿�𝑧�

+ �11𝐿�𝑧
3 − 3𝐿�2𝐿�𝑧 − 59𝐿�𝑧� �𝐿�+

3 − 𝐿�−
3�� 

𝑂�6−2 =
−𝑖
4
��𝐿�+

2 − 𝐿�−
2� �33𝐿�𝑧

4 − 18𝐿�2𝐿�𝑧
2 − 123𝐿�𝑧

2 + 𝐿�22 + 10𝐿�2 + 102�

+ �33𝐿�𝑧
4 − 18𝐿�2𝐿�𝑧

2 − 123𝐿�𝑧
2 + 𝐿�22 + 10𝐿�2 + 102� �𝐿�+

2 − 𝐿�−
2�� 

𝑂�6−1 =
−𝑖
4
��𝐿�+ − 𝐿�−� �33𝐿�𝑧

5 − 30𝐿�2𝐿�𝑧
3 + 15𝐿�𝑧

3 + 5𝐿�22𝐿�𝑧 − 10𝐿�2𝐿�𝑧 + 12𝐿�𝑧�

+ �33𝐿�𝑧
5 − 30𝐿�2𝐿�𝑧

3 + 15𝐿�𝑧
3 + 5𝐿�22𝐿�𝑧 − 10𝐿�2𝐿�𝑧 + 12𝐿�𝑧� �𝐿�+ − 𝐿�−�� 

𝑂�60 = 231𝐿�𝑧
6 − 315𝐿�2𝐿�𝑧

4 + 735𝐿�𝑧
4 + 105𝐿�22𝐿�𝑧

2 − 525𝐿�2𝐿�𝑧
2 + 294𝐿�𝑧

2 − 5𝐿�23 + 40𝐿�22

− 60𝐿�2 

𝑂�6+1 =
1
4
��𝐿�+ + 𝐿�−� �33𝐿�𝑧

5 − 30𝐿�2𝐿�𝑧
3 + 15𝐿�𝑧

3 + 5𝐿�22𝐿�𝑧 − 10𝐿�2𝐿�𝑧 + 12𝐿�𝑧�

+ �33𝐿�𝑧
5 − 30𝐿�2𝐿�𝑧

3 + 15𝐿�𝑧
3 + 5𝐿�22𝐿�𝑧 − 10𝐿�2𝐿�𝑧 + 12𝐿�𝑧� �𝐿�+ + 𝐿�−�� 

𝑂�6+2 =
1
4
��𝐿�+

2 + 𝐿�−
2� �33𝐿�𝑧

4 − 18𝐿�2𝐿�𝑧
2 − 123𝐿�𝑧

2 + 𝐿�22 + 10𝐿�2 + 102�

+ �33𝐿�𝑧
4 − 18𝐿�2𝐿�𝑧

2 − 123𝐿�𝑧
2 + 𝐿�22 + 10𝐿�2 + 102� �𝐿�+

2 + 𝐿�−
2�� 
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𝑂�6+3 =
1
4
��𝐿�+

3 + 𝐿�−
3� �11𝐿�𝑧

3 − 3𝐿�2𝐿�𝑧 − 59𝐿�𝑧� + �11𝐿�𝑧
3 − 3𝐿�2𝐿�𝑧 − 59𝐿�𝑧� �𝐿�+

3 + 𝐿�−
3�� 

𝑂�6+4 =
1
4
��𝐿�+

4 + 𝐿�−
4� �11𝐿�𝑧

2 − 𝐿�2 − 38� + �11𝐿�𝑧
2 − 𝐿�2 − 38� �𝐿�+

4 + 𝐿�−
4�� 

𝑂�6+5 =
1
4
��𝐿�+

5 + 𝐿�−
5� 𝐿�𝑧 + 𝐿�𝑧 �𝐿�+

5 + 𝐿�−
5�� 

𝑂�6+6 =
1
2
�𝐿�+

6 + 𝐿�−
6� 

 
Table 2.2.3 – Operator equivalent factors for the lanthanides in the �𝐽,𝑚𝐽〉 basis 

Ion Multiplet 2nd Rank 4th Rank 6th Rank 
CeIII 2F5/2 -2/35 2/315 0 
PrIII 3H4 -52/2475 -4/5445 272/4459455 
NdIII 4I9/2 -7/1089 -136/467181 -1615/42513471 
PmIII 5I4 14/1815 952/2335905 2584/42513471 
SmIII 6H5/2 13/315 26/10395 0 
EuIII 7F0 0 0 0 
GdIII 8S7/2 0 0 0 
TbIII 7F6 -1/99 2/16335 -1/891891 
DyIII 6H15/2 -2/315 -8/135135 4/3864861 
HoIII 5I8 -1/450 -1/30030 -5/3864861 
ErIII 4I15/2 4/1575 2/45045 8/3864861 
TmIII 3H6 1/99 8/49005 -5/891891 
YbIII 2F7/2 2/63 -2/1155 4/27027 

 
Table 2.2.4 – Operator equivalent factors for the lanthanides in the |𝐿,𝑚𝐿 ,𝑆,𝑚𝑆〉 basis 

Ion Term 2nd Rank 4th Rank 6th Rank 
CeIII 2F -2/45 2/495 -4/3861 
PrIII 3H -2/135 -4/10395 2/81081 
NdIII 4I -2/495 -2/16335 -10/891891 
PmIII 5I 2/495 2/16335 10/891891 
SmIII 6H 2/135 4/10395 -2/81081 
EuIII 7F 2/45 -2/495 4/3861 
GdIII 8S 0 0 0 
TbIII 7F -2/45 2/495 -4/3861 
DyIII 6H -2/135 -4/10395 2/81081 
HoIII 5I -2/495 -2/16335 -10/891891 
ErIII 4I 2/495 2/16335 10/891891 
TmIII 3H 2/135 4/10395 -2/81081 
YbIII 2F 2/45 -2/495 4/3861 
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Note that only 2nd and 4th rank operators are required to describe CFs for d-block ions, 
whereas the 6th rank is also, generally, required for f-block ions. Of course, however, higher 
rank operators may be required to accurately describe ZFS effects. 
 
In cubic symmetry (e.g. Oh or Td) the 𝐵44 and 𝐵64 terms are non-zero and directly related to the 
axial 𝐵40 and 𝐵60 terms (Equations 2.2.13 and 2.2.14).13 These relations can be enforced by 
PHI, by using the force_cubic command, such that only the 𝐵40 and 𝐵60 terms need to be 
specified (this is particularly useful when fitting). In this convention for d-block ions, 𝐵40 > 0 
corresponds to Td symmetry and 𝐵40 < 0 corresponds to Oh symmetry. 
 

𝐵44 = 5𝐵40                                                           (2.2.13) 
 

𝐵64 = −21𝐵60                                                         (2.2.14) 
 
The second order CF operators are intimately related to those of the standard ZFS Spin 
Hamiltonian17 and using the definitions of the CF operators as in Table 2.2.2, the 
relationships between the ZFS parameters and the CFPs are therefore expressed in Equations 
2.2.15 and 2.2.16. 
 

𝐷 = 3𝐵20𝜃2                                                           (2.2.15) 
 

𝐸 = 𝐵22𝜃2                                                            (2.2.16) 
 
The non-zero CFPs are determined solely by the point group of the ion in question. Often the 
assumed point group symmetry does not include the entire molecule, but only the first 
coordination sphere of the paramagnetic ion, as this is the largest contribution to the 
perturbation. Often, idealized symmetry may be used initially, followed by small corrections 
to allow for distortions of lower symmetry. For a full C1 representation, all 27 CFPs are 
required. If the group is not C1 then only CFPs with even 𝑞 are required. If a Cn axis is 
present, only CFPs with 𝑞 = 𝑗𝑗, where 𝑗 is an integer, are required. Only the following 
groups need negative 𝑞 CFPs: C1, Ci (S2), C3, C3i (S6), C4, S4 and C6. A comprehensive list of 
non-zero CFPs for all point group symmetries can be found in Gorller-Walrand and 
Binnemans' chapter.18 
 
Since version 3.0, nuclear spins can be included using the ****Ion block. In this case, the 
CFPs involving nuclear spins correspond to the quadrupole splitting. Note that the convention 
given above also applies to the nuclear spins, which is different to the usual quadrupole 
expression. 
 
Zeeman Effect 
The Zeeman Effect is the stabilization and destabil1ization of angular momentum projections 
parallel and anti-parallel to a magnetic field, Equation 2.2.17. It is this response to the 
magnetic field which is responsible for the observable magnetic properties, such as 
magnetization and magnetic susceptibility. 
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Since version 3.0, nuclear spins can be included using the ****Ion block. In this case, the 
Zeeman term for nuclear spins is implemented by using the effective g-values given in Table 
4.3.1. 
 

𝐻�𝑍𝑍𝑍 = 𝜇𝐵��𝜎𝑖𝐿��⃑ 𝑖 ⋅ 𝐼 ̿+ 𝑆⃑̂𝑖 ⋅ 𝑔𝚤� � ⋅ 𝐵�⃑
𝑁

𝑖=1

                                   (2.2.17) 

 
where 𝐼 ̿is the identity matrix 

𝑔𝚤�  is the g-tensor 
 
Orbital reduction factor 
Note that in all Hamiltonians above, the 𝜎 parameter has been included with all orbital 
operators. This is the combined 𝜎 = −𝐴 ⋅ 𝜅 factor, required when using the T≡P equivalence 
for orbital triplet terms.19 A is required when making the T → P substitution and takes the 
value of 1.0 when representing a T2 term and 3/2 when representing a T1 term. κ (or k in 
some texts) is the orbital reduction factor which is an empirical constant, 0 < 𝜅 < 1, and 
accounts for a reduction in the effective orbital angular momentum due to covalency or low 
symmetry effects. It can be effectively removed setting 𝜎 to unity (default). Note that for the 
SO and CF Hamiltonians the orbital reduction factor is included as 𝜎𝑖, 𝜎𝑖2, 𝜎𝑖3, 𝜎𝑖4, 𝜎𝑖5 or 𝜎𝑖6 
for first, second, third, fourth, fifth and sixth rank, respectively, where required. 
 
Magnetic properties 
The inclusion of the Zeeman Hamiltonian allows the magnetic properties to be calculated 
from first principles20 without resorting to perturbation theory. Thus, full mixing of all states 
by the magnetic field is implicitly included. The fundamental definitions for the magnetic 
properties are expressed in Equations 2.2.18 and 2.2.19. 
 

𝑀 ∝ −
𝜕𝜕
𝜕𝜕

                                                            (2.2.18) 

 

𝜒 ∝
𝜕𝜕
𝜕𝜕

                                                             (2.2.19) 

 
The molar magnetization is the sum of the magnetization of each state weighted by its 
Boltzmann population, Equation 2.2.20, where Z is the partition function, Equation 2.2.22, 
giving the magnetization for a single Cartesian direction, 𝛼 ∈ x, y, z, in Bohr Magnetons per 
mole (µB mol-1). Equivalently, the Magnetization can be calculated using Equation 2.2.21.  
 

𝑀𝛼 =
1
𝑍𝜇𝐵

�−
𝜕𝐸𝑖
𝜕𝐵𝛼

𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

                                            (2.2.20) 

 

𝑀𝛼 =
𝑘𝐵𝑇
𝜇𝐵

𝜕 ln𝑍
𝜕𝐵𝛼

                                                     (2.2.21) 
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𝑍 = �𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

                                                         (2.2.22) 

 
Following Equation 2.2.19, the molar magnetic susceptibility is the first derivative of 
Equation 2.2.20, resulting in Equation 2.2.23, which contains terms that depend on the first 
and second derivatives of the eigenvalues with respect to the magnetic field. As there are two 
derivative steps there are nine possible combinations of the Cartesian directions, 𝛼,𝛽 ∈
𝑥,𝑦, 𝑧, leading to the definition of the 3 × 3 magnetic susceptibility tensor. Equation 2.2.23 
reduces to the traditional vanVleck formula in the limit of zero magnetic field, however the 
numerical method employed here is capable of accurately determining the susceptibility in 
the presence of non-zero fields as used in experiment. Following Equation 2.2.21, Equation 
2.2.24 is entirely equivalent to Equation 2.2.23. 
 

𝜒𝛼,𝛽 =
𝜕𝑀𝛼

𝜕𝐵𝛽
=

𝑁𝐴
10𝑘𝐵𝑇𝑍2

�𝑍 ��
𝜕𝐸𝑖
𝜕𝐵𝛼

𝜕𝐸𝑖
𝜕𝐵𝛽

𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

− 𝑘𝐵𝑇�
𝜕2𝐸𝑖

𝜕𝐵𝛼𝜕𝐵𝛽
𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

�

− ��
𝜕𝐸𝑖
𝜕𝐵𝛼

𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

���
𝜕𝐸𝑖
𝜕𝐵𝛽

𝑒
−𝐸𝑖
𝑘𝐵𝑇

𝑑𝑑𝑑

𝑖=1

�� 

 
(2.2.23) 

 

𝜒𝛼,𝛽 =
𝑁𝐴𝑘𝐵𝑇

10
𝜕2 ln𝑍
𝜕𝐵𝛼𝜕𝐵𝛽

                                                (2.2.24) 

 
Most commonly however, the magnetic susceptibility as measured is actually approximated 
as 𝜒 ≈ 𝑀/𝐵. While the difference between this approximation and the true differential 
susceptibility given by Equations 2.2.23 and 2.2.24 is minimal for isotropic cases, it can be 
significant for highly anisotropic systems. Therefore by default since version 3.0, PHI 
calculates the magnetic susceptibility using Equation 2.2.25 – calculation of the differential 
susceptibility can still be activated by keyword. Since version 3.1.2 PHI can calculate the full 
magnetic susceptibility tensor, and it does do using the differential formula of Equation 
2.2.24. 
 

𝜒𝛼 =
𝑘𝐵𝑇
𝜇𝐵

𝜕 ln𝑍
𝜕𝐵𝛼

1
𝐵𝛼

                                                  (2.2.25) 

 
The entropy change associated with the application and removal of a magnetic field is the 
quantity associated with the Magnetocaloric Effect (MCE). The magnetic entropy change is 
easily calculated for isotropic or anisotropic systems through Equation 2.2.26.21 Note that 𝑀𝑟 
is the molecular mass of the complex and the entropy change is in units of J kg-1 K-1. 
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−∆𝑆𝛼 =
−1000𝑁𝐴

𝑀𝑟
�

𝜕𝑀𝛼

𝜕𝜕
𝑑𝐵𝛼

𝐵𝛼=∆𝐵

𝐵𝛼=0

                                    (2.2.26) 

 
The low temperature heat capacity of a paramagnetic system can be very sensitive to the 
magnetic interactions. PHI is equipped to calculate the magnetic heat capacity through 
Equation 2.2.27, which includes a phenomenological term to capture the effect of the lattice 
heat capacity.22 The heat capacity is given in units of R (NAkB), where 𝑇𝐷 is the Debye 
temperature and 𝛼 is the lattice exponent. 
 

𝐶 =
𝑍 �∑ 𝐸𝑖2𝑒

−𝐸𝑖
𝑘𝐵𝑇𝑑𝑑𝑑

𝑖=1 � − �∑ 𝐸𝑖𝑒
−𝐸𝑖
𝑘𝐵𝑇𝑑𝑑𝑑

𝑖=1 �
2

𝑘𝐵
2𝑇2𝑍2

+ 234 �
𝑇
𝑇𝐷
�
𝛼

                (2.2.27) 

 
Approximations 
Whilst the general method for the calculation of the magnetic properties of arbitrary systems 
has been given above, a useful simplification of the method is possible when considering 
magnetically isotropic ‘spin-only’ compounds. Taking advantage of the spherical symmetry 
of the Hamiltonian in conjunction with first order approximation methods can lead to a 
substantial reduction in the computational demands of the problem. While the uncoupled 
basis is most useful for anisotropic systems easily allowing formulation of the SO and CF 
Hamiltonians, isotropic systems requiring only the isotropic exchange Hamiltonian are block 
diagonal in a total spin basis. In this case the problem can be solved by considering each 
block independently, greatly reducing the dimension of the problem and speeding up the 
calculation. The matrix elements can be calculated using Irreducible Tensor Operators (ITOs) 
and the Wigner-Ekhart theorem and while the literature is well established, the necessary 
equations and procedures are presented to clarify frequent typographical errors and to present 
a consistent notation. 
 
In this example, the coupled basis is formed by first coupling 𝑆1 and 𝑆2 to make 𝑆12 or 𝑆̃1, 
followed by coupling 𝑆̃1 to 𝑆3 to make 𝑆123 or 𝑆̃2 etc., to the final total spin 𝑆, expressed in 
bra-ket notation in Equation 2.2.28. Recall that these are vector sums such that Equation 
2.2.29 must be satisfied for all coupling steps. 
 

�𝑆1,𝑆2, 𝑆̃1, 𝑆3, 𝑆̃2, … , 𝑆,𝑚𝑆〉 ≡ ��𝑆̃�, 𝑆,𝑚𝑆〉                                (2.2.28) 
 

�𝑆𝑖 − 𝑆𝑗� ≤ 𝑆̃𝑘 ≤ 𝑆𝑖 + 𝑆𝑗                                               (2.2.29) 
 
The isotropic exchange Hamiltonian can be represented by use of a 0th rank tensor operator,23 
Equation 2.2.30. The matrix elements of spherical tensor operators are evaluated by applying 
the Wigner-Ekhart theorem24 followed by a decoupling procedure to calculate the reduced 
matrix elements,25,26 as expressed in Equation 2.2.31, where the numerator of the fraction is a 
Clebsch-Gordan coefficient and the quantities in braces are Wigner 9j symbols27 (see below 
for simplifications). The remaining reduced matrix element can be easily calculated (see 
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below). Note that the 𝑘𝑖 and 𝑘�𝑖 values are the ranks of the component and intermediate spins, 
respectively, and can be easily determined using simple rules.26 
 

𝐻�𝐸𝐸 = −2 � 𝐽𝑖𝑖 �𝑆⃑̂𝑖 ⋅ 𝑆⃑̂𝑗�
𝑖,𝑗∈𝑁

𝑖<𝑗

= 2√3 � 𝐽𝑖𝑖𝑇� (0)

𝑖,𝑗∈𝑁

𝑖<𝑗

                         (2.2.30) 

 
 

��𝑆̃′�, 𝑆′,𝑚𝑆
′ �𝑇� (0)��𝑆̃�, 𝑆,𝑚𝑆�

=
⟨𝑆,𝑚𝑆; 0,0|𝑆′,𝑚𝑆

′ ⟩
√2𝑆′ + 1

��2𝑘�1 + 1��2𝑆̃1 + 1��2𝑆̃1′ + 1� �
𝑆1 𝑆1 𝑘1
𝑆2 𝑆2 𝑘2
𝑆̃1′ 𝑆̃1 𝑘�1

� 

× ��〈𝑆𝑖|| 𝑆̂(𝑘𝑖) ||𝑆𝑖〉
𝑁

𝑖=1

�����2𝑘�𝑖 + 1��2𝑆̃𝑖 + 1��2𝑆̃𝑖′ + 1� �
𝑆̃𝑖−1′ 𝑆̃𝑖−1 𝑘�𝑖−1
𝑆𝑖+1 𝑆𝑖+1 𝑘𝑖+1
𝑆̃𝑖′ 𝑆̃𝑖 𝑘�𝑖

�
𝑁−1

𝑖=2

� 

(2.2.31) 
 
As the tensor is rank zero, the Clebsch-Gordan coefficient is equivalent to two Kronecker 
delta functions, Equation 2.2.32. While this simplifies the calculations, it also implies 
something much more meaningful – there is no dependence on the magnetic quantum number 
at all, such that it may be excluded from the basis and the dimensionality of the Hamiltonian 
matrix further reduced. Coupled with block diagonalization of the matrix, this leads to a 
tremendous reduction in the computational effort required for the problem. 
 

⟨𝑆,𝑚𝑆; 0,0|𝑆′,𝑚𝑆
′ ⟩ = 𝛿𝑆,𝑆′𝛿𝑚𝑆,𝑚𝑆

′                                        (2.2.32) 
 
The occurrence of Wigner 9j symbols in every matrix element is unfortunate due to their 
computational complexity, however in this case there are only four possible 9j symbols which 
are easily simplified.26 They are presented below in Equations 2.2.33 ‒ 2.2.36, where the 
quantities in the braces on the right hand side of the equations are Wigner 6j symbols. 
 

�
𝑎 𝑏 0
𝑐 𝑑 0
𝑒 𝑓 0

� =
𝛿𝑎,𝑏𝛿𝑐,𝑑𝛿𝑒,𝑓

�(2𝑎 + 1)(2𝑐 + 1)(2𝑒 + 1)
                            (2.2.33) 

 

�
𝑎 𝑏 1
𝑐 𝑑 0
𝑒 𝑓 0

� =
𝛿𝑐,𝑑(−1)𝑎+𝑓+𝑐+1

�3(2𝑐 + 1)
�𝑏 𝑎 1
𝑒 𝑓 𝑐�                             (2.2.34) 

 

�
𝑎 𝑏 1
𝑐 𝑑 1
𝑒 𝑓 0

� =
𝛿𝑒,𝑓(−1)𝑏+𝑐+𝑒+1

�3(2𝑒 + 1)
�𝑎 𝑏 1
𝑑 𝑐 𝑒�                             (2.2.35) 
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�
𝑎 𝑏 0
𝑐 𝑑 1
𝑒 𝑓 1

� =
𝛿𝑎,𝑏(−1)𝑎+𝑑+𝑒+1

�3(2𝑎 + 1)
�𝑓 𝑒 1
𝑐 𝑑 𝑎

�                            (2.2.36) 

 
The reduced matrix elements remaining in Equation 2.2.31 are easily calculated, depending 
on the rank of the particular spin operator:25 
 

〈𝑆𝑖|| 𝑆̂(0) ||𝑆𝑖〉 = �2𝑆𝑖 + 1                                            (2.2.37) 
 

〈𝑆𝑖|| 𝑆̂(1) ||𝑆𝑖〉 = �𝑆(𝑆 + 1)(2𝑆 + 1)                                  (2.2.38) 
 
Once the matrix elements have been calculated, the matrix is diagonalized to determine the 
eigenvalues and eigenvectors of the coupled states. To evaluate the magnetic properties it is 
necessary to determine the effective g-factors for the coupled spin multiplets. In general, the 
spin multiplets, 𝜓𝑎, originate from a mixture of the different ��𝑆̃�, 𝑆𝑎〉 coupled basis states, 
necessitating further ITO algebra.28 The g-factors for each multiplet can be calculated 
according to Equations 2.2.39 – 2.2.41, where the spin projection coefficients 𝑝𝑎,𝑖 represent 
the effective spin density of the ��𝑆̃�,𝑆𝑎〉 on the ith metal site and the 𝑐𝑎,𝑆̃′ factors are the 
components of the eigenvector describing state 𝜓𝑎. Note that this procedure is very slow for 
large systems, and can be avoided if a single g-factor is used for all sites. With the g-factors 
known, the magnetic properties are calculated by considering the first order Zeeman 
perturbation to the 𝑚𝑆 states. 
 

𝑔𝑎 = �𝑝𝑎,𝑖𝑔𝑖

𝑁

𝑖=1

                                                       (2.2.39) 

 

𝑝𝑎,𝑖 =
𝑏𝑎,𝑖

�𝑆𝑎(𝑆𝑎 + 1)(2𝑆𝑎 + 1)
                                        (2.2.40) 

𝑏𝑎,𝑖 = ��𝑐𝑎,𝑆̃′𝑐𝑎,𝑆̃��𝑆̃′�, 𝑆��𝑆̂(𝑘𝑖)���𝑆̃�, 𝑆�
𝑆̃𝑆̃′

= ��𝑐𝑎,𝑆̃′𝑐𝑎,𝑆̃
𝑆̃𝑆̃′

��2𝑘�1 + 1��2𝑆̃1 + 1��2𝑆̃1′ + 1� �
𝑆1 𝑆1 𝑘1
𝑆2 𝑆2 𝑘2
𝑆̃1′ 𝑆̃1 𝑘�1

� 

× ��〈𝑆𝑖|| 𝑆̂(𝑘𝑖) ||𝑆𝑖〉
𝑁

𝑖=1

�����2𝑘�𝑖 + 1��2𝑆̃𝑖 + 1��2𝑆̃𝑖′ + 1� �
𝑆̃𝑖−1′ 𝑆̃𝑖−1 𝑘�𝑖−1
𝑆𝑖+1 𝑆𝑖+1 𝑘𝑖+1
𝑆̃𝑖′ 𝑆̃𝑖 𝑘�𝑖

�
𝑁−1

𝑖=2

� 

(2.2.41) 
 
Powder integration 
For powder measurements on anisotropic systems, the calculations must be integrated over 
many orientations to accurately reflect the experiment. While poly-crystalline samples 
contain a finite number of crystallites with discrete orientations, it is usually assumed that the 
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size of the crystals is small enough that it is closely representative of a powder sample with 
an infinite number of orientations evenly distributed on the sphere. For the magnetic 
susceptibility, it is sufficient to use the ‘xyz’ integration scheme, as this is exact for a second 
rank tensor property. For the magnetization however, the ‘xyz’ scheme is inadequate and 
should not be used. A number of orientation integration schemes are possible; PHI uses the 
Zaremba-Conroy-Wolfsberg (ZCW) scheme as presented by Levitt.29 The implementation in 
PHI samples the magnetic properties over a hemisphere, as magnetic properties are invariant 
under inversion of the magnetic field. 
 
Pseudo g-tensors 
For calculations involving anisotropic ions which give rise to doublet states, pseudo g-tensors 
may be calculated within the basis of each doublet. This is equivalent to treating each doublet 
as a pseudo-spin 𝑆̃ = 1/2 state whose magnetic anisotropy is given by the g-tensor. For 
Kramers systems these doublets are related by time inversion symmetry and the treatment is 
rigorous, however for non-Kramers systems the g-tensors for pseudo doublets are only 
approximate and only 𝑔𝑧 is non-zero due to vanishing off-diagonal elements between the 
conjugate states.17 The theory is well established,30,31 but a brief overview of the method will 
be given. Note that PHI does not currently support the g-tensor calculation in bases of other 
values of pseudo-spin. 
 
For a given system, the expectation values of the three Cartesian magnetic moment operators 
are evaluated in the basis of the zero field wavefunction, Equation 2.2.42. The g-tensor is 
then constructed for each doublet through Equation 2.2.43, where 𝜓 and 𝜓′ are the 
wavefunctions of the doublet and 𝛼,𝛽 ∈ 𝑥,𝑦, 𝑧. 
 

𝜇𝛼��� = Ψ�†
𝐻�𝑍𝑍𝑍�𝐵𝛼=1
�������������

𝜇𝐵
Ψ�                                                  (2.2.41) 

 

𝐺𝛼,𝛽 = 2 � � 𝜇𝛼𝑢,𝑣𝜇𝛽𝑣,𝑢
𝑣=𝜓,𝜓′𝑢=𝜓,𝜓′

                                       (2.2.42) 

 
This g-tensor is then diagonalized to yield three principle values and their corresponding 
directions, leading to the definition of the anisotropic g-tensor for each pseudo-spin doublet. 
By convention, the directions are defined such that 𝑔𝑥 < 𝑔𝑦 < 𝑔𝑧. 
 
Transition probabilities 
For anisotropic systems, the zero-field average transition probability between states 𝑢 and 𝑣 
is calculated through Equation 2.2.44, using the expectation values of the three Cartesian 
magnetic moment operators, Equation 2.2.41. The transition probabilities are in units of 
squared Bohr magnetons (𝜇𝐵2). 
 

𝑇𝑢,𝑣 =
1
3

� ��𝑣���𝐻�𝑍𝑍𝑍�𝐵𝛼=1�
𝑁

𝑖=1

�𝑢��

2

𝛼=𝑥,𝑦,𝑧

                            (2.2.44) 
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J-mixing 
For calculations on single lanthanide ions in the �𝐿𝑖,𝑚𝐿𝑖, 𝑆𝑖,𝑚𝑆𝑖〉 basis, the wavefunction is 

expressed also in the �𝐽𝑖 ,𝑚𝐽𝑖
〉 basis, though a Clebsch-Gordan decomposition. This provides a 

means of investigating the extent of J-mixing by the CF. 
 
Non-collinearity 
For single magnetic centres the orientation of the reference frame is always an arbitrary 
choice and any symmetry elements that may be identified, by crystallography or other means, 
can be related to this axis. When considering multiple magnetic sites in a single compound, 
while the global reference frame is still arbitrary, the individual reference frames, which may 
possess defined symmetry elements, may not be coincident and in which case it would not be 
ideal to enforce the global frame upon all sites. Therefore PHI allows users to rotate 
individual reference frames of the magnetic centres to allow for a description of each centre 
in its own, most convenient, reference frame. The two sources of magnetic anisotropy in PHI 
are the anisotropic g-tensor and the CF Hamiltonian. The diagonal g-tensor and/or the 
exchange matrix can be rotated into the local frame, using the Z-Y’-Z’’ convention according 
to Equations 2.2.45 – 2.2.49. The rotation of the CFPs is performed according to Mulak and 
Mulak’s convention,32 with a slight modification. The rotation of a set of CFPs of a given 
rank, in Wybourne notation, is given by Equation 2.2.50, where the elements of the unitary 
rotation matrix, 𝐷�, are given by Equation 2.2.51. The symbols in brackets in Equation 2.2.51 
are binomial coefficients. 
Note that PHI and EasySpin use very different conventions for rotation matrices, but by a 
happy coincidence the practical use of the three Euler angles is identical. 
 

𝑅𝑧���(𝜃) =
cos 𝜃 − sin𝜃 0
sin𝜃 cos 𝜃 0

0 0 1
                                           (2.2.45) 

 

𝑅𝑦����(𝜃) =
cos 𝜃 0 sin𝜃

0 1 0
− sin𝜃 0 cos 𝜃

                                           (2.2.46) 

 
 

𝑅𝑃𝑃𝑃������(𝛼,𝛽, 𝛾) = 𝑅𝑧(𝛼) ∙ 𝑅𝑦(𝛽) ∙ 𝑅𝑧(𝛾)                                  (2.2.47) 
 

𝐺′��� = 𝑅𝑃𝑃𝑃������(𝛼,𝛽, 𝛾) ∙ 𝐺̿ ∙ 𝑅𝑃𝑃𝑃������𝑇(𝛼,𝛽, 𝛾)                                  (2.2.48) 
 

𝐽𝚤𝚤′���� = 𝑅𝑃𝑃𝑃������(𝛼,𝛽, 𝛾) ∙ 𝐽𝚤𝚤��� ∙ 𝑅𝑃𝑃𝑃������𝑇(𝛼,𝛽, 𝛾)                                  (2.2.49) 
 
 

𝐵′𝑘������⃑ = 𝐷�(𝑘)(𝛼,𝛽, 𝛾) ⋅ 𝐵𝑘����⃑                                                (2.2.50) 
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𝐷(𝑘)
𝑚,𝑛(𝛼,𝛽, 𝛾) = 𝑒𝑖(𝑚𝑚+𝑛𝑛)�

(𝑘 + 𝑚)! (𝑘 −𝑚)!
(𝑘 + 𝑛)! (𝑘 − 𝑛)!

 

× �� 𝑘 + 𝑛
𝑘 −𝑚 − 𝑝� �

𝑘 − 𝑛
𝑝 � (−1)𝑘−𝑚−𝑝𝑐𝑐𝑐 �

−𝛽
2
�
2𝑝+𝑚+𝑛

𝑠𝑠𝑠 �
−𝛽
2
�
2𝑘−2𝑝−𝑚−𝑛2𝑘

𝑝=0

 

(2.2.51) 
 
TIP, intermolecular interactions and magnetic impurities 
A Temperature Independent Paramagnetic (TIP) component can be added to the calculated 
magnetic susceptibility, directly in units of cm3 mol-1, Equation 2.2.52. 
 
Intermolecular interactions between spin systems can be modelled using the mean-field 
approximation, Equation 2.2.53; this expression changed as of version 2.0 to allow its use in 
anisotropic systems. 
 
Magnetic impurities are included employing analytical expressions for the field and 
temperature dependent magnetization, magnetic susceptibility and heat capacity, assuming 
the impurities are pure spin centres with g = 2.0. As of version 2.0, the impurity value 
represents the fraction of the system, Equations 2.2.54 – 2.2.56. 
 
These effects are included in the order of TIP, zJ, magnetic impurity, giving the final 
expression for the magnetic susceptibility, Equation 2.2.57. 
 

𝜒𝑇𝑇𝑇 = 𝜒𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑇                                                     (2.2.52) 
 

where 𝑇𝑇𝑇 is the temperature independent paramagnetism 
 

𝜒𝑧𝑧 =
𝜒𝑇𝑇𝑇

1 − � 𝑧𝑧
𝑁𝐴𝜇𝐵2

� 𝜒𝑇𝑇𝑇
                                            (2.2.53) 

 
where 𝑧𝑧 is the intermolecular interaction parameter 

 
𝜒 = (1 − 𝐼𝐼𝐼)𝜒𝑧𝑧 + (𝐼𝐼𝐼)𝜒𝐼𝐼𝐼                                      (2.2.54) 

 
𝑀 = (1 − 𝐼𝐼𝐼)𝑀𝑐𝑐𝑐𝑐 + (𝐼𝐼𝐼)𝑀𝐼𝐼𝐼                                   (2.2.55) 

 
𝐶 = (1 − 𝐼𝐼𝐼)𝐶𝑐𝑐𝑐𝑐 + (𝐼𝐼𝐼)𝐶𝐼𝐼𝐼                                     (2.2.56) 

 
where 𝜒𝐼𝐼𝐼 is the field and temperature dependent magnetic susceptibility of the impurity 

𝑀𝐼𝐼𝐼 is the field and temperature dependent magnetization of the impurity 
𝐶𝐼𝐼𝐼 is the field and temperature dependent heat capacity of the impurity 

𝐼𝐼𝐼 is the fraction of magnetic impurity 
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𝜒 = (1 − 𝐼𝐼𝐼)
𝜒𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑇

1 − � 𝑧𝑧
𝑁𝐴𝜇𝐵2

� (𝜒𝑐𝑐𝑐𝑐 + 𝑇𝑇𝑇)
+ (𝐼𝐼𝐼)𝜒𝐼𝐼𝐼                       (2.2.57) 

 
Electron Paramagnetic Resonance 
The simulation of EPR spectra is not a simple task. Due to the field swept nature of the 
experiment, the action of the magnetic field on the sample must be accounted for and 
generally cannot be treated as a perturbation. Therefore, evaluation of the field dependent 
wavefunctions is required. Many approaches for this task have been employed, using various 
approximations, most of which involve searching the energy manifolds for transitions.33,34 In 
PHI, the EPR spectrum is calculated via a ‘brute-force’ approach which considers the 
transition probability for every pair of states at each field point explicitly. While this 
approach is very computationally intensive, it does not rely on any approximations and 
includes all transitions, whether deemed to be ‘allowed’ or ‘forbidden’ as well as looping 
transitions. The EPR absorption as a function of field is calculated through Equation 2.2.58 or 
2.2.59 for perpendicular or parallel mode, respectively. 
 
There is also the possibility in PHI to calculate EPR spectra using infinite order perturbation 
theory. The structure of the code is almost identical to that for the full method, however in 
place of diagonalization of the full Hamiltonian, the exchange and Zeeman components are 
treated as perturbations to the zeroth order wavefunctions, which are the eigenfunctions of the 
SO and CF Hamiltonians. This method therefore assumes knowledge of the single-site 
properties for each ion, which can then be perturbed by the exchange interaction and 
magnetic field. Of course this is inappropriate in large magnetic fields or if the exchange 
interactions are stronger than the SO or CF terms. 
 
The linewidth function assumes a pseudo-voigt profile (Equation 2.2.60),35 which has shown 
to be required in certain applications.36 The linewidth is treated in frequency space and 
therefore no frequency-field conversion factor (commonly referred to as the 1

𝑔
 factor) is 

required.37,38 Note that the 𝑥′ and 𝑦′ directions are determined as mutually orthogonal to the 
main magnetic field, 𝐵�⃑ , while the 𝑧′ direction is parallel to it. 
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𝐴�𝐵�⃗ � = � ���𝑗�𝐻�𝑍𝑍𝑍�𝐵
𝑥′����⃑
=1
�𝑖��

2

+ ��𝑗�𝐻�𝑍𝑍𝑍�𝐵
𝑦′�����⃑
=1
�𝑖��

2

�
𝑖,𝑗∈𝑑𝑑𝑑

𝑖<𝑗

�𝑒
−𝐸𝑖
𝑘𝐵𝑇 − 𝑒

−𝐸𝑗
𝑘𝐵𝑇�

𝑍
𝑉�∆𝐸, 𝜂𝑖𝑖 , 𝑣� 

(2.2.58) 
 

𝐴�𝐵�⃗ � = � ��𝑗�𝐻�𝑍𝑍𝑍�𝐵
𝑧′����⃑
=1
�𝑖��

2𝑖,𝑗∈𝑑𝑑𝑑

𝑖<𝑗

�𝑒
−𝐸𝑖
𝑘𝐵𝑇 − 𝑒

−𝐸𝑗
𝑘𝐵𝑇�

𝑍
𝑉�∆𝐸, 𝜂𝑖𝑖 , 𝑣�           (2.2.59) 

 
where |𝑖⟩ and 𝑗⟩ are two eigenstates evaluated at 𝐵�⃑  

∆𝐸 = ��𝐸𝑖 − 𝐸𝑗� − 𝐸𝑀𝑀� 

𝜂𝑖𝑖 is the linewidth 
𝑣 is the voigt parameter 

 

𝑉(∆𝐸, 𝜂, 𝑣) = 𝑣
2

𝜋𝜋 �1 + 4 �∆𝐸𝜂 �
2
�

+ (1 − 𝑣)
2√ln 2

√𝜋𝜂𝑒
−4 ln2�∆𝐸𝜂 �

2           (2.2.60) 

 
As with the calculation of powder thermodynamic magnetic properties of anisotropic 
systems, the EPR absorption signal must be integrated over all possible orientations of the 
magnetic field; the ZCW scheme as discussed above is used for this purpose. After the 
absorption spectrum is calculated, it is normalized and if requested the first or second 
derivative or the integration is taken via finite differences. 
 
The EPR linewidth can be anisotropic to account for unresolved spectral features such as 
hyperfine coupling. This is performed using the direction cosines for the direction of the 
external magnetic field, Equation 2.2.61.36 The linewidth can also be augmented to include 
the effects of crystal mosacity,39 and/or strain in the spin Hamiltonian parameters,36 which is 
performed for each pair of states, Equation 2.2.62. These derivatives are evaluated 
analytically using the Hellmann-Feynman theorem.40 
 

𝜂0 = �𝜂𝑥2�𝑧′���⃑ ∙ 𝑥⃑�
2

+ 𝜂𝑦2�𝑧′���⃑ ∙ 𝑦⃑�
2

+ 𝜂𝑧2�𝑧′���⃑ ∙ 𝑧�
2

                   (2.2.61) 
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𝜂𝑖𝑖 = �𝜂02 + 𝜔2 ��
𝜕𝐸𝑖
𝜕𝐵𝜃

−
𝜕𝐸𝑗
𝜕𝐵𝜃

�
2

+ �
𝜕𝐸𝑖
𝜕𝐵𝜑

−
𝜕𝐸𝑗
𝜕𝐵𝜑

�
2

� + ��
𝜕�𝐸𝑗 − 𝐸𝑖�

𝜕𝜕
�
2

𝜎𝑝2
𝑝

   (2.2.62) 

 
where 𝜔 is the mosacity parameter 

𝑝 is a parameter of the spin Hamiltonian 
𝜎𝑝 is the strain in parameter 𝑝 

 
Error residuals and Uncertainties 
In all cases, the error for a particular data set is calculated following the sum of squares 
approach, Equation 2.2.63 as an example for magnetization and susceptibility. When 
calculating the total error for a simultaneous comparison to multiple data sets, the total 
residual is calculated as the product of the individual sum of squares errors for each data set. 
In this way, different error scales of the individual data sets will not obscure features in one 
dataset. 
 

𝑅𝑅𝑅 = � � �𝑀𝑒𝑒𝑒 − 𝑀𝑐𝑐𝑐𝑐�
2

𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1

� � � �𝜒𝑒𝑒𝑒 − 𝜒𝑐𝑐𝑐𝑐�
2

𝑝𝑝𝑝𝑝𝑝𝑝

𝑖=1

�                   (2.2.63) 

 
After parameters have been optimised to fit a particular model to an experimental data set, the 
uncertainties in the optimal parameters are reported. The hessian matrix (Equation 2.2.64) 
and the covariance matrix are calculated at the minimum (Equation 2.2.65).41 The uncertainty 
for each free variable is the square root of the diagonal element of the covariance matrix 
(Equation 2.2.66), and the correlation between two parameters is given by Equation 2.2.67. 
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                                (2.2.64) 

 

𝐶̿ =
𝐻�−1𝑅𝑅𝑅

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
                                             (2.2.65) 

 

𝜎𝑖 = �𝐶𝑖̿,𝑖                                                            (2.2.66) 

 

𝜌𝑖,𝑗 =
𝐶𝑖̿,𝑗
𝜎𝑖𝜎𝑗

                                                           (2.2.67) 



21 
 

3. Code Description 
 

 

3.1 PHI 
 
PHI is written in Fortran95 and C++. The GUI is written in C++ using the Qt toolkit and the 
Quantum Mechanics is written in Fortran95. The latter is split into six modules for easy 
maintenance; data.f90, ang_mom.f90, powder.f90, props.f90, fitting.f90 and phi.f90. 
 
data.f90 contains all the explicit variable declarations for global variables and arrays. It also 
contains a number of subroutines which initialize constants, read input files, write output files 
and perform diagnostics. 
 
ang_mom.f90 contains all the Hamiltonian operators and tools required for matrix operations. 
 
powder.f90 contains the routines required for powder integration procedures. 
 
props.f90 contains the subroutines for the calculation of the magnetic properties. 
 
fitting.f90 contains the subroutines necessary to perform surveys and fits, containing residual 
calculation routines and fitting algorithms. 
 
phi.f90 is the main program which controls what calculations are to be performed. 
 
The program can be well understood by means of an operational schematic, Figure 3.1.1. 
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Figure 3.1.1 – Operational schematic of PHI 

 
PHI has been written to take advantage of multiple processor cores, now common in 
consumer and specialized machines. There are two models of parallelism currently supported 
by PHI – Symmetric Multi-Processing (SMP) and Single Process Multiple Data (SPMD) – 
which use fundamentally different ideas to perform tasks more efficiently compared to a 
sequential model. The simplest approach to increase computational efficiency is to employ 
multiple cores on a shared memory machine (SMP model) to perform multiple 
diagonalizations simultaneously, which is achieved in PHI using OpenMP threads to 
distribute work. However, the SMP model is clearly limited by the size of the machine, both 
the number of cores and available memory. For this reason, the SPMD model is one of the 
most common parallel strategies due to the cost effectiveness of multiple smaller machines. 
PHI uses the MPI standard to distribute work amongst an arbitrary number of processes 
connected by a network. 
 
Multi-dimensional non-linear optimization is a difficult problem, often requiring in-depth 
parameter space analysis to determine the global minimum for a given problem. For this 
reason, PHI contains two internal fitting algorithms, Powell’s method42 and the Simplex 
method,43 which have been implemented based on those described in Numerical Recipes for 
Fortran.44 The Simplex method is well suited to optimizing nearby minima while Powell’s 
method is often useful in situations where a good initial guess is not available. 
 
PHI contains several functions from the Fortran version of Stevenson’s anglib library45 – 
modified versions of the functions ‘cleb’, ‘sixj’, ‘binom’ and ‘angdelta’ are contained within 
the source. 
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Since version 3.0, PHI can be compiled with a GUI written in C++ with the Qt framework. 
The direct compilation of the GUI in this way means that data can be shared between the two 
codes, leading to better performance and tighter integration. In addition to the Qt GUI toolkit, 
PHI makes use of the QCustomPlot library46 for plotting. 
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4. User Guide 
 

 

4.1 Binaries and compilation 
 
PHI is available as a command line binary, GUI binary or as source code. 
 
To compile PHI from source, the Makefile must be tailored to the specifications of the 
system at hand, a Fortran95 compiler must be available and the appropriate libraries need to 
be compiled and in known locations. The source files must be listed in the order shown in the 
Makefile or errors will be encountered. PHI must be compiled using a C pre-processor, which 
provides a means for compiling different versions of the code from the same source files. 
Table 4.1.1 shows the compile time options. Even without SMP or SPMD activated, the C 
pre-processor must still be invoked. If compiling for SPMD, it is recommended to use your 
MPI library’s wrapper compiler, eg “mpifort” with the additional libraries and options 
required by PHI. It is recommended that PHI be compiled with the highest level of compiler 
optimization and inter-procedural optimization. Note that the source code is written in free-
form Fortran95 and therefore compilers such as gfortran need the ‘-ffree-line-length-3500’ 
flag (or similar). The supplied Makefile provides a skeleton to set up a custom compilation of 
PHI. The variables at the top of the file must be set in order to compile the program. 
COMPILER is your Fortran 95 compiler, e.g. ifort or gfortran. MPI_COMPILER is your 
wrapper MPI compiler, e.g. mpifort. FLAGS and MPI_FLAGS can be adjusted as the user 
pleases. LAPACK must be set to the appropriate library destination and contain links to 
lapack and blas. SOURCES is the list of source files for PHI and must be in the default order.  
The flags in the Makefile may be specific to the ifort compiler and therefore must be 
substituted for their equivalent flag for your compiler (e.g. -openmp becomes -fopenmp for 
gfortran). 
 
For compilation of the GUI version, we recommended using the Qt creator software with the 
PHI.pro.user files provided as a guide. Note that the appropriate compilers and linear algebra 
libraries will be required in this case also. 
 

Table 4.1.1 – Compile time options 
Option C pre-

processor flag 
Other required 

flags 
Additional 
libraries 

Forbidden 
flags 

SMP (OpenMP) -Domp -openmp  -Dmpi 
SPMD (MPI) -Dmpi  MPI -Domp 

GUI -Dgui    
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4.2 Program execution 
 
To run PHI on the command line, it is as simple as launching the executable on the command 
line from the working directory containing the input file, e.g. “phi_vx.x_linux64.x test-job”, 
where test-job is the name of the input file. 
 
The GUI version is launched by simply running PHI.exe on Windows, PHI.app on MacOS or 
PHI.sh on LINUX. 
 

4.3 Input files and syntax 
 
Input to the program is via plain text input and data files. The job name used to launch the 
program (Section 4.2) defines the name of the associated input and data files PHI will look 
for. It will look for files in the directory that the program was launched from, the current 
working directory. For the above example, PHI will look for “test-job.input” in the current 
directory. This input file contains all the instructions that PHI needs to perform calculations. 
The other data files required vary based on the type of calculation specified by the input file. 
A total list of input and data files is given below, using the example job name. 
 
test-job.input   Contains all input specifications and parameters 
test-job_mag.exp  Contains experimental magnetization data 
test-job_sus.exp  Contains experimental susceptibility data 
test-job_tensor.exp  Contains experimental magnetic susceptibility tensor data 
test-job_levels.exp  Contains experimental energy levels 
test-job_G.exp   Contains experimental g-tensors 
test-job_mce.exp  Contains experimental MCE data 
test-job_epr.exp  Contains experimental EPR data 
test-job_heat.exp  Contains experimental heat capacity data 
 
.input specification 
This file is delimited into blocks by headers, signified by four asterisks, “****”. The first 
block must be the ****Spin or ****Ion block (see below) and the input file must be 
terminated by “****End”. The input file is not case-sensitive, despite the notation given in 
this manual for clarity.  After the “****End” termination line, the input file is not read by 
PHI and so may contain descriptions, other input specifications or comments. Also, any line 
that begins with ! or # or / is interpreted as a comment and not read by PHI. 
 
The first block, which must be the ****Spin or ****Ion block, specifies the number and type 
of magnetic centres in the problem and this can be done in one of two ways.  
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Method 1: 
 
****Spin block 
In the first method, the ‘full’ input method, the first line must be “****Spin” and the 
subsequent lines denote the spin angular momentum of the centres. The ‘spins’ are entered as 
two times the spin (2𝑆𝑖), or the number of unpaired electrons. Note that these spins may be 
real spins or pseudo-spins. In the following example, three paramagnetic centres are declared 
with spins 𝑆1 = 2, 𝑆2 = 𝑆3 = 𝑆4 = 5/2. 
 

 
 
****Orbit block 
In the ‘full’ input method, the “****Orbit” block is also used, which details the 
corresponding orbital angular momentum of each site declared in the ****Spin block. Like 
the ****Spin block, the orbital moments must be entered as two times the orbital moment 
(2𝐿𝑖). If this block is omitted, the orbital moments are all assumed to be zero. This example 
assigns 𝐿1 = 𝐿2 = 𝐿3 = 0 and 𝐿4 = 5, corresponding to the spins above. 
 

 
 
Method 2: 
 
****Ion block 
The above two blocks can be efficiently replaced in the case of common situations, by using 
the ‘simple’ input method. To use the simple input method, the first line must be “****Ion” 
and the subsequent lines define the centres in a standard notation. The example below would 
make exactly the same assignments as specified in the examples above, under certain 
assumptions. 
 

 
 
The possible keywords for the ****Ion block are given in Table 4.3.1 with the specifications 
that they designate. Since version 3.0, nuclear spins for elements with a single isotope 

****Spin 
4 
5 
5 
5 

****Orbit 
0 
0 
0 
10 

****Ion 
Mn(III)Oh(w) 
Fe(III)Oh(w) 
Fe(III)Oh(w) 
Dy(LS) 
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comprising > 90% natural abundance can be included using the ****Ion block. Note that the 
Hamiltonian conventions given in section 2.2 still apply. 
 

Table 4.3.1 – Ion types 

Keyword Term S L λ (cm-1) σ Comment 
Ee 2S 1/2 0 - - Radical 

Ti(III)Oh 2T2g 1/2 1 155.0 -1.0 Oh symmetry 
Ti(III)Td 2E 1/2 0 - - Td symmetry 
Ti(III)FI 2D 1/2 2 155.0 1.0 Spherical symmetry 
Ti(II)Oh 3T1g 1 1 61.5 -1.5 Oh symmetry 
Ti(II)Td 3A2 1 0 - - Td symmetry 
Ti(II)FI 3F 1 3 61.5 1.0 Spherical symmetry 

V(IV)Oh 2T2g 1/2 1 250.0 -1.0 Oh symmetry 
V(IV)Td 2E 1/2 0 - - Td symmetry 
V(IV)FI 2D 1/2 2 250.0 1.0 Spherical symmetry 
V(III)Oh 3T1g 1 1 105.0 -1.5 Oh symmetry 
V(III)Td 3A2 1 0 - - Td symmetry 
V(III)FI 3F 1 3 105.0 1.0 Spherical symmetry 
V(II)Oh 4A2g 3/2 0 - - Oh symmetry 

V(II)Td(w) 4T1 3/2 1 56.5 -1.5 Td symmetry, weak CF 
V(II)Td(s) 2E 1/2 0 - - Td symmetry, strong CF 

V(II)FI 4F 3/2 3 56.5 1.0 Spherical symmetry 
Cr(III)Oh 4A2g 3/2 0 - - Oh symmetry 

Cr(III)Td(w) 4T1 3/2 1 91.5 -1.5 Td symmetry, weak CF 
Cr(III)Td(s) 2E 1/2 0 - - Td symmetry, strong CF 

Cr(III)FI 4F 3/2 3 91.5 1.0 Spherical symmetry 
Cr(II)Oh(w) 5Eg 2 0 - - Oh symmetry, weak CF 
Cr(II)Td(w) 5T2 2 1 57.5 -1.0 Td symmetry, weak CF 

Cr(II)FI 5D 2 2 57.5 1.0 Spherical symmetry 
Mn(VI)Oh 2T2g 1/2 1 540.0 -1.0 Oh symmetry 
Mn(VI)Td 2E 1/2 0 - - Td symmetry 
Mn(VI)FI 2D 1/2 2 540.0 1.0 Spherical symmetry 
Mn(IV)Oh 4A2g 3/2 0 - - Oh symmetry 

Mn(IV)Td(w) 4T1 3/2 1 138.5 -1.5 Td symmetry, weak CF 
Mn(IV)Td(s) 2E 1/2 0 - - Td symmetry, strong CF 

Mn(IV)FI 4F 3/2 3 138.5 1.0 Spherical symmetry 
Mn(III)Oh(w) 5Eg 2 0 - - Oh symmetry, weak CF 
Mn(III)Td(w) 5T2 2 1 89.0 -1.0 Td symmetry, weak CF 

Mn(III)FI 5D 2 2 89.0 1.0 Spherical symmetry 
Mn(II)Oh(w) 6A1g 5/2 0 - - Oh symmetry, weak CF 
Mn(II)Oh(s) 2T2g 1/2 1 -300.0 -1.0 Oh symmetry, strong CF 
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Mn(II)Td(w) 6A1 5/2 0 - - Td symmetry, weak CF 
Mn(II)FI 6S 5/2 0 - - Spherical symmetry 
Fe(VI)Oh 3T1g 1 1 332.5 -1.5 Oh symmetry 
Fe(VI)Td 3A2 1 0 - - Td symmetry 
Fe(VI)FI 3F 1 3 332.5 1.0 Spherical symmetry 

Fe(III)Oh(w) 6A1g 5/2 0 - - Oh symmetry, weak CF 
Fe(III)Oh(s) 2T2g 1/2 1 -460.0 -1.0 Oh symmetry, strong CF 
Fe(III)Td(w) 6A1 5/2 0 - - Td symmetry, weak CF 

Fe(III)FI 6S 5/2 0 - - Spherical symmetry 
Fe(II)Oh(w) 5T2g 2 1 -100.0 -1.0 Oh symmetry, weak CF 
Fe(II)Td(w) 5E 2 0 - - Td symmetry, weak CF 

Fe(II)FI 5D 2 2 -100.0 1.0 Spherical symmetry 
Co(III)Oh(w) 5T2g 2 1 -145.0 -1.0 Oh symmetry, weak CF 
Co(III)Td(w) 5E 2 0 - - Td symmetry, weak CF 

Co(III)FI 5D 2 2 -145.0 1.0 Spherical symmetry 
Co(II)Oh(w) 4T1g 3/2 1 -171.5 -1.5 Oh symmetry, weak CF 
Co(II)Oh(s) 2Eg 1/2 0 - - Oh symmetry, strong CF 

Co(II)Td 4A2 3/2 0 - - Td symmetry 
Co(II)FI 4F 3/2 3 -171.5 1.0 Spherical symmetry 

Ni(III)Oh(w) 4T1g 3/2 1 -235.0 -1.5 Oh symmetry, weak CF 
Ni(III)Oh(s) 2Eg 1/2 0 - - Oh symmetry, strong CF 

Ni(III)Td 4A2 3/2 0 - - Td symmetry 
Ni(III)FI 4F 3/2 3 -235.0 1.0 Spherical symmetry 
Ni(II)Oh 3A2g 1 0 - - Oh symmetry 
Ni(II)Td 3T1 1 1 -315.0 -1.5 Td symmetry 
Ni(II)FI 3F 1 3 -315.0 1.0 Spherical symmetry 
Cu(II)Oh 2Eg 1/2 0 - - Oh symmetry 
Cu(II)Td 2T2 1/2 1 -830.0 -1.0 Td symmetry 
Cu(II)FI 2D 1/2 2 -830.0 1.0 Spherical symmetry 

Ce(J) 2F5/2 5/2 0 - - Spherical symmetry 
Ce(LS) 2F 1/2 3 Table 2.2.1 1.0 Spherical symmetry 
Pr(J) 3H4 4 0 - - Spherical symmetry 

Pr(LS) 3H 1 5 Table 2.2.1 1.0 Spherical symmetry 
Nd(J) 4I9/2 9/2 0 - - Spherical symmetry 

Nd(LS) 4I 3/2 6 Table 2.2.1 1.0 Spherical symmetry 
Pm(J) 5I4 4 0 - - Spherical symmetry 

Pm(LS) 5I 2 6 Table 2.2.1 1.0 Spherical symmetry 
Sm(J) 6H5/2 5/2 0 - - Spherical symmetry 

Sm(LS) 6H 5/2 5 Table 2.2.1 1.0 Spherical symmetry 
Eu(LS) 7F 3 3 Table 2.2.1 1.0 Spherical symmetry 
Gd(III) 8S 7/2 0 - - Spherical symmetry 
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Tb(J) 7F6 6 0 - - Spherical symmetry 
Tb(LS) 7F 3 3 Table 2.2.1 1.0 Spherical symmetry 
Dy(J) 6H15/2 15/2 0 - - Spherical symmetry 

Dy(LS) 6H 5/2 5 Table 2.2.1 1.0 Spherical symmetry 
Ho(J) 5I8 8 0 - - Spherical symmetry 

Ho(LS) 5I 2 6 Table 2.2.1 1.0 Spherical symmetry 
Er(J) 4I15/2 15/2 0 - - Spherical symmetry 

Er(LS) 4I 3/2 6 Table 2.2.1 1.0 Spherical symmetry 
Tm(J) 3H6 6 0 - - Spherical symmetry 

Tm(LS) 3H 1 5 Table 2.2.1 1.0 Spherical symmetry 
Yb(J) 2F7/2 7/2 0 - - Spherical symmetry 

Yb(LS) 2F 1/2 3 Table 2.2.1 1.0 Spherical symmetry 
1H - 1/2 0 - - geff = -3.04206422539567×10-3 
7Li - 3/2 0 - - geff = 1.18233679972407×10-3 
9Be - 3/2 0 - - geff = 4.27497106541515×10-4 
14N - 1 0 - - geff = -2.19895100623363×10-4 
19F - 1/2 0 - - geff = -2.86345235614900×10-3 

23Na - 3/2 0 - - geff = -8.05133438386439×10-4 
27Al - 5/2 0 - - geff = -7.93290633008815×10-4 
31P - 1/2 0 - - geff = -1.23257717246290×10-3 
39K - 3/2 0 - - geff = -1.42134142130333×10-4 
45Sc - 7/2 0 - - geff = -7.40129043657371×10-4 
51V - 7/2 0 - - geff = -8.01164269761082×10-4 

55Mn - 5/2 0 - - geff = -7.52279448711121×10-4 
59Co - 7/2 0 - - geff = -7.19983661185914×10-4 
75As - 3/2 0 - - geff = -5.22641694748156×10-4 
89Y - 1/2 0 - - geff = 1.49677523139677×10-4 
93Nb - 9/2 0 - - geff = -7.46778817109020×10-4 
103Rh - 1/2 0 - - geff = 9.62882838862856×10-5 
115In - 9/2 0 - - geff = -6.70586900165064×10-4 
127I - 5/2 0 - - geff = -6.12862945362421×10-4 

133Cs - 7/2 0 - - geff = -4.01775608553100×10-4 
139La - 7/2 0 - - geff = -4.33055467544589×10-4 
141Pr - 5/2 0 - - geff = -9.31403976823108×10-4 
159Tb - 3/2 0 - - geff = -7.31420617982361×10-4 
165Ho - 7/2 0 - - geff = -9.08421139832151×10-4 
169Tm - 1/2 0 - - geff = 2.51613049521855×10-4 
175Lu - 7/2 0 - - geff = -3.47356716417833×10-4 
181Ta - 7/2 0 - - geff = -3.68863641365058×10-4 
197Au - 3/2 0 - - geff = -5.29171652461937×10-5 
209Bi - 9/2 0 - - geff = -4.97453158946455×10-4 
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Note that for all d block ions and LS type f-block ions, the isotropic electronic spin g-factor is 
set to 2.0. For J type lanthanides, the isotropic g-factor is set to the appropriate gJ

 value.17 For 
the d-block free-ions (FI) and LS type f-block ions, the appropriate operator equivalent 
factors are automatically included. 
 
Other blocks 
****Gfactors block 
To specify the spin g-factors for the centres, the “****Gfactors” block is used. Unless 
specified, all g-factors are taken to be 2.0 by default. The syntax requires the site index 
followed by one or three values, indicating either an isotropic or anisotropic spin g-factor 
(𝑔𝑥,𝑔𝑦,𝑔𝑧). Strain in the g-values for EPR simulations can be given independently for each 
component, in brackets immediately following the value. In the following example, the 
second centre is given an anisotropic spin g-factor of 𝑔𝑥 = 𝑔𝑦 = 1.9 and 𝑔𝑧 = 2.2, where the 
𝑔𝑧 value has g-strain of 0.5, the third centre is also given an anisotropic spin g-factor of 
𝑔𝑥 = 0.1, 𝑔𝑦 = 2.5 and 𝑔𝑧 = 11.9 and the fourth centre is given an isotropic spin g-factor of 
1.98. 
 

 
 
****Exchange block 
To define (an)isotropic exchange coupling interactions between the centres, the 
“****Exchange” block is used. The interactions are all zero by default, so only the required 
interactions should be listed. This is done on one line by specifying the index of the first site, 
followed by the index of the second site, followed by the isotropic or anisotropic exchange 
values in cm-1. Only one or three values should be given, indicating either an isotropic 
exchange or the three diagonal components of the exchange matrix Jxx, Jyy and Jzz. Strain in 
the exchange parameters for EPR simulations is given in brackets immediately following the 
value. The following example specifies three coupling pathways between sites 1 and 2, 2 and 
3 and 1 and 3, where the exchange involving site 1 is axially anisotropic and there is J-strain 
in the exchange between sites 2 and 3. 
 

 
 
****Antisymmetric block 
To define the antisymmetric components of exchange interactions between centres, the 
“****Antisymmetric” block is used. The interactions are all zero by default, so only the 
required interactions should be listed. This is done on one line by specifying the index of the 
first site, followed by the index of the second site, followed by the three components of the 
antisymmetric exchange in cm-1. Strain in the antisymmetric exchange parameters for EPR 

****Gfactors 
2 1.9 1.9 2.2(0.5) 
3 0.1 2.5 11.9 
4 1.98 

****Exchange 
1 2 2.0 2.0 -6.0 
2 3 5.5(1) 
1 3 1.0 1.0 5.0 
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simulations is given in brackets immediately following the value. The following example 
specifies antisymmetric exchange between sites 2 and 3. Note that handedness is preserved 
with PHI, so that switching the order of the interacting pair is equivalent to negating the 
antisymmetric exchange vector. 
 

 
 
****Interaction block 
To define completely asymmetric exchange interactions between centres, the 
“****Interaction” block is used. The interactions are all zero by default, so only the required 
interactions should be listed. The syntax is similar to that for the “****Fit” and 
“****Survey” blocks, see below. The first line for each exchange pair gives the site indices, 
followed by three lines for each row of the interaction tensor in cm-1. The final line must be 
“----” which signifies the end of the interaction tensor. Strain in the interaction tensor for EPR 
simulations is given in brackets immediately following the value. Note that handedness is 
preserved with PHI, so that switching the order of the interacting pair will imply usage of the 
transpose of the given exchange tensor. 
 

 
 
****SOCoupling block 
To define or modify the SO Coupling parameters, the “****SOCoupling” block is used. The 
syntax requires the site index followed by up to six values representing the first to sixth order 
SO Coupling parameters in cm-1. Strain in the SO parameters for EPR simulations is given in 
brackets immediately following the value. This example sets the parameters for the sites 1 
and 5 only, where site 5 has only a first order component, while site 1 has both first and 
second order, where the second order component has some strain. 
 

 
 
****OReduction block 
The combined orbital reduction parameters can be set, through the use of this block. These 
are specified by the index of the site followed by the value of the total orbital reduction 
parameter. A value of 1.0 removes the feature (default), i.e. no orbital reduction. Strain in the 
orbital reduction parameters for EPR simulations is given in brackets immediately following 
the value. In this example, site 5 is given a total orbital reduction parameter of 0.98 (be sure 
not to confuse the terminology and sign of the parameter when using the T,P equivalence 
method19). 

****Antisymmetric 
2 3 0.1 -0.1 1.5 

****Interaction 
2 3 
Jxx Jxy Jxz 
Jyx Jyy Jyz 
Jzx Jzy Jzz 
---- 

****SOCoupling 
1 421.0 -5.78(0.2) 
5 -165.0 
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****CrystalField block 
A CF may be specified by using the “****CrystalField” block. The syntax requires the site 
index, followed by the rank, order and then value of the parameter in cm-1. The site index, 
rank and order must be integers, while the CFPs must be real numbers. If the ‘full’ input 
method was used, operator equivalent factors are not included by PHI automatically and they 
must be included in the input parameters explicitly, if required. However if the ‘simple’ input 
method was used, the operator equivalent factors for the lanthanides and d-block free-ions are 
automatically included by PHI. Strain in the CF parameters for EPR simulations is given in 
brackets immediately following the value. The following example assumes the ****Spin 
block was used and therefore specifies the 𝐵20𝜃2 parameter equal to -0.1 cm-1 for site 1 with a 
strain of 0.06 cm-1, the 𝐵63𝜃6 parameter equal to 0.0006 cm-1 for site 2 and the 𝐵4−1𝜃4 
parameter equal to 0.230 cm-1. 
 
To describe a weak cubic field for the d-block free-ions, it is recommended to use the ‘Cubic 
N’ parameter (see Table 4.3.3). As the operator equivalent factors are taken into account 
using the simple input method, octahedral fields are described in all cases with a positive 𝐵40 
parameter and tetrahedral fields with a negative 𝐵40 parameter. 
 
Note the convention given in section 2.2 when using the 𝐵20𝜃2 to represent the common ZFS 
parameter 𝐷, and the switch “ZFS I J K …” in the ****Params block. 
 

 
 
****Sus block 
This block provides all the options for the calculation of magnetic susceptibility. Table 4.3.2 
gives all the available options for this block. 
 

Table 4.3.2 – ****Sus block options 

Parameter Options/Syntax Comments 
Magnetic field direction / 

integration 
Field STR 

 
Field Powder N 

 
Field Axial N 

 
Field Vector X Y Z 

 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Powder’ then 
ZCW integration is used where N ≥ 0. If STR 
is Axial then integration with N points in the 

positive quadrant of the z-x plane is 
performed. If STR is ‘Vector’ an arbitrary 

single direction is given. If STR is ‘Angles’ an 
arbitrary single direction is given in polar 

****OReduction 
5 0.98 

****Crystal Field 
1 2 0 -0.1(0.06) 
2 6 3 0.0006 
3 4 -1 0.230 
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Field Angles θ φ coordinates in degrees. Default = “Field z” 
(isotropic), “Field xyz” (anisotropic). 

Magnetic field BSus A B C D … Selects the magnetic field(s) in Tesla for the 
calculation. Any number of fields can be listed 

on the same line. Default = “BSus 0.01”. 
Temperature sweep Sweep Low High N <log> Sets the temperature range (in Kelvin), the 

number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 1.8 300 

250”. 
Temperature Independent 

Paramagnetism 
TIP X Sets a TIP (in cm3 mol-1). Default = “TIP 0”. 

Intermolecular interaction zJ X Sets the mean-field zJ parameter (in cm-1). 
Default = “zJ 0”. 

Differential susceptibility Differential Calculates the true differential susceptibility, 
as opposed to the default 𝜒 = 𝑀/𝐵.  

 
****Tensor block 
This block provides all the options for the calculation of the magnetic susceptibility tensor. 
Table 4.3.3 gives all the available options for this block. 
 

Table 4.3.3 – ****Tensor block options 

Parameter Options/Syntax Comments 
Magnetic field BSus A B C D … Selects the magnetic field(s) in Tesla for the 

calculation. Any number of fields can be listed 
on the same line. Default = “BSus 0.01”. 

Temperature sweep Sweep Low High N <log> Sets the temperature range (in Kelvin), the 
number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 1.8 300 

250”. 
 
****Mag block 
This block provides all the options for the calculation of magnetization. Table 4.3.4 gives all 
the available options for this block. 
 

Table 4.3.4 – ****Mag block options 

Parameter Options/Syntax Comments 
Magnetic field direction / 

integration 
Field STR 

 
Field Powder N 

 
Field Axial N 

 
Field Vector X Y Z 

 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Powder’ then 
ZCW integration is used where N ≥ 0. If STR 
is Axial then integration with N points in the 

positive quadrant of the z-x plane is 
performed. If STR is ‘Vector’ an arbitrary 

single direction is given. If STR is ‘Angles’ an 
arbitrary single direction is given in polar 
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Field Angles θ φ coordinates in degrees. Default = “Field z” 
(isotropic), “Field Powder 3” (anisotropic). 

Temperature TMag A B C D … Selects the temperature(s) in Kelvin for the 
calculation. Any number of temperatures can 
be listed on the same line. Default = “TMag 2 

4 10 20”. 
Magnetic field sweep Sweep Low High N <log> Sets the magnetic field range (in Tesla), the 

number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 0 7 10”. 

 
****MCE block 
This block provides all the options for the calculation of the magnetocaloric effect. Table 
4.3.5 gives all the available options for this block. 
 

Table 4.3.5 – ****MCE block options 

Parameter Options/Syntax Comments 
Magnetic field direction / 

integration 
Field STR 

 
Field Powder N 

 
Field Axial N 

 
Field Vector X Y Z 

 
Field Angles θ φ 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Powder’ then 
ZCW integration is used where N ≥ 0. If STR 
is Axial then integration with N points in the 

positive quadrant of the z-x plane is 
performed. If STR is ‘Vector’ an arbitrary 

single direction is given. If STR is ‘Angles’ an 
arbitrary single direction is given in polar 

coordinates in degrees. Default = “Field z” 
(isotropic), “Field Powder 3” (anisotropic). 

Magnetic field BMCE A B C D … Selects the magnetic field(s) in Tesla for the 
calculation. Any number of fields can be listed 

on the same line. Default = “BMCE 7”. 
Temperature sweep Sweep Low High N <log> Sets the temperature range (in Kelvin), the 

number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 1.8 50 

250”. 
Molecular mass Mass X Sets the molecular mass for the sample in g 

mol-1. Default = “Mass 2000”. 
Integration Integrate N Sets the number of magnetic field integration 

points. Default = “Integrate 50”. 
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****HeatCapacity block 
This block provides all the options for the calculation of the heat capacity. Table 4.3.6 gives 
all the available options for this block. 
 

Table 4.3.6 – ****HeatCapacity block options 

Parameter Options/Syntax Comments 
Magnetic field direction / 

integration 
Field STR 

 
Field Powder N 

 
Field Axial N 

 
Field Vector X Y Z 

 
Field Angles θ φ 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Powder’ then 
ZCW integration is used where N ≥ 0. If STR 
is Axial then integration with N points in the 

positive quadrant of the z-x plane is 
performed. If STR is ‘Vector’ an arbitrary 

single direction is given. If STR is ‘Angles’ an 
arbitrary single direction is given in polar 

coordinates in degrees. Default = “Field z” 
(isotropic), “Field Powder 3” (anisotropic). 

Magnetic field BHeat A B C D … Selects the magnetic field(s) in Tesla for the 
calculation. Any number of fields can be listed 

on the same line. Default = “BHeat 0.1”. 
Temperature sweep Sweep Low High N <log> Sets the temperature range (in Kelvin), the 

number of points and optionally spacing on a 
logarithmic scale. Temperatures are on a base-
10 logarithmic scale. Default = “Sweep 0.5 20 

250 log”. 
Debye lattice contribution Debye TD α Sets the Debye temperature (in Kelvin) and 

exponent. Default = “Debye 0 0” 
 
****EPR block 
The “****EPR” block is used to specify the options for the EPR calculation. The possible 
keywords are given in Table 4.3.7. 
 

Table 4.3.7 – ****EPR block options 

Parameter Options/Syntax Comments 
Magnetic field direction / 

integration 
Field STR 

 
Field Powder N 

 
Field Axial N 

 
Field Vector X Y Z 

 
Field Angles θ φ 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Powder’ then 
ZCW integration is used where N ≥ 0. If STR 
is Axial then integration with N points in the 

positive quadrant of the z-x plane is 
performed. If STR is ‘Vector’ an arbitrary 

single direction is given. If STR is ‘Angles’ an 
arbitrary single direction is given in polar 
coordinates in degrees.  Default = “Field 

Powder 6”. 
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Temperature TEPR A B C D … Sets the temperature(s) for the simulation, in 
Kelvin. Default = “TEPR 5”. 

Frequency FEPR A B C D … Sets the frequency(ies) for the simulation, in 
GHz. Default = “FEPR 9.5 35 94”. 

Spectrum type Type A B C D … Selects whether the absorption (N = 0), first 
derivative (N = 1), second derivative (N = 2) 
or integrated absorption (N = -1) spectrum is 

to be calculated, for each frequency. Default = 
“Type 1 1 1 1 …”. 

Parallel mode Parallel Selects parallel mode. Default = Off. 
Magnetic field sweep Sweep Low High N <log> Sets the magnetic field range (in Tesla), the 

number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 0 1.6 

250”. 
Linewidth LW A B C D … Sets the isotropic pseudo-voigt linewidth, in 

GHz, for each frequency. If only one linewidth 
is given and multiple frequencies are to be 

simulated, then all frequencies have the same 
linewidth. Default = “Linewidth 0.27”. 

Anisotropic linewidth, 
x-direction 

LWX A B C D … Sets the anisotropic pseudo-voigt linewidth for 
the x-direction, in GHz, for each frequency. If 

only one linewidth is given and multiple 
frequencies are to be simulated, then all 

frequencies have the same linewidth. Default = 
“Linewidth 0.27”. 

Anisotropic linewidth, 
y-direction 

LWY A B C D … Sets the anisotropic pseudo-voigt linewidth for 
the y-direction, in GHz, for each frequency. If 

only one linewidth is given and multiple 
frequencies are to be simulated, then all 

frequencies have the same linewidth. Default = 
“Linewidth 0.27”. 

Anisotropic linewidth, 
z-direction 

LWZ A B C D … Sets the anisotropic pseudo-voigt linewidth for 
the z-direction, in GHz, for each frequency. If 

only one linewidth is given and multiple 
frequencies are to be simulated, then all 

frequencies have the same linewidth. Default = 
“Linewidth 0.27”. 

Pseudo-voigt parameter Voigt A B C D … Sets the pseudo-voigt parameter for each 
frequency. If only one parameter is given and 
multiple frequencies are to be simulated, then 

all frequencies have the same parameter. 
Default = “Voigt 1” (Lorentzian). 

Mosaicity Mosaic A B C D … Sets the mosacity parameter for each 
frequency. If only one parameter is given and 
multiple frequencies are to be simulated, then 

all frequencies have the same parameter. 
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Default = “Mosaic 0”. 
Absolute intensity NoNorm Gives the calculated EPR data in absolute 

intensity units without normalization. 
Infinite order perturbation 

theory 
Subspace N Uses subspace perturbation theory to calculate 

the EPR spectrum for the N lowest lying 
states. Default = Off 

 
****Zeeman block 
The “****Zeeman” block is used to specify the options for the Zeeman calculation. The 
possible keywords are given in Table 4.3.8. 
 

Table 4.3.8 – Zeeman options 

Parameter Options/Syntax Comments 
Magnetic field direction Field STR 

 
Field Vector X Y Z 

 
Field Angles θ φ 

Selection of magnetic field: STR is either x, y 
or z for single directions or xyz for principal 

axes integration. If STR is ‘Vector’ an 
arbitrary single direction is given. If STR is 

‘Angles’ an arbitrary single direction is given 
in polar coordinates in degrees. Default = 

“Field z”. 
Magnetic field sweep Sweep Low High N <log> Sets the magnetic field range (in Tesla), the 

number of points and optionally spacing on a 
logarithmic scale. Default = “Sweep 0 7 250”. 

 
Either the full calculation or the approximation scheme (in cases where applicable) may be 
used to perform such a sweep. If using the full calculation method, please note that due to the 
convention of matrix diagonalization routines, the eigenvalues are returned in ascending 
order, thus presenting artefacts at level crossings which appear like avoided crossings. This is 
demonstrated in Figure 4.3.1 with a simple isotropic case using the full calculation (top) and 
the approximation method (bottom), both with 10 steps. It is clearly seen that the level 
crossings are not correctly displayed in the top figure due to the width of the steps and the 
eigenvalue re-ordering. This can be corrected visually by increasing the number of steps. 
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Figure 4.3.1 – Zeeman plots using a full calculation (top) and the approximation method (bottom) 

 
****Survey block 
To perform a parameter sweep, the “****Survey” block is utilized. The first line of this block 
specifies what the user wishes to survey. For example, if the first line is ‘Residual’ the output 
will be the residual error between the calculation and experiment against the parameters in 
the survey. Other options include ‘M(i,j)’, ‘S(i,j)’, ‘C(i,j)’ or ‘H(i,j)’, which represent the 
value of the magnetization, susceptibility, MCE or heat capcity respectively, for the ith field 
and the jth temperature. Following the first line, this block is internally delimited into sections 
which belong to the same variable, by “----”; this delimiter must be present even at the end of 
the final section as shown below. The start and end values for the parameter and the number 
of steps required are first specified, followed by the properties that they control. In the 
following example, the exchange coupling parameter is varied between -10 and 10 cm-1 in 20 
steps and the isotropic g-factors of sites 1 and 4 are varied from 1.7 to 2.3 in 10 steps. 
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Table 4.3.9 lists the syntax for different properties; note that the dummy integers (zeros) must 
be present.  
 

Table 4.3.9 – ****Fit and ****Survey block syntax 

Syntax Comment 
EX SiteA SiteB 1/2/3/4/5/6/7  Exchange coupling, third integer represents x, y, 

z, isotropic, antisymmetric x, antisymmetric y or 
antisymmetric z. 

IN SiteA SiteB 1/2/3/4/5/6/7/8/9
  

Interaction tensor, third integer represents Jxx, 
Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy or Jzz. 

SO Site 1/2/3/4/5/6 Spin-orbit coupling, second integer is the order. 
GF Site 1/2/3/4  G-factor, second integer represents x, y, z or 

isotropic. 
CF Site Rank Order Crystal field parameter. 
RC Site 1/2/3 Reference frame rotation, second integer 

represents α, β or γ. 
RE SiteA SiteB 1/2/3 Exchange frame rotation, third integer 

represents α, β or γ. 
OR Site Orbital reduction parameter. 
LW Freq.  1/2/3/4  EPR linewidth, second integer selects 

corresponding frequency (0 applies to all 
frequencies), third integer represents x, y, z, or 
isotropic 

VO Freq. EPR pseudo-voigt parameter, second integer 
selects corresponding frequency, where 0 
implies all frequencies. 

MO Freq. EPR mosacity, second integer selects 
corresponding frequency, where 0 implies all 
frequencies. 

TI Temperature Independent Paramagnetism. 
DT Debye temperature. 
DA Debye exponent. 
ZJ Mean-field intermolecular interaction. 
IM Monomeric impurity. 
ES SiteA SiteB 1/2/3/4/5/6/7  Exchange strain, third integer represents x, y, z, 

****Survey 
Residual 
-10.0 10.0 20 
EX 1 2 4 
---- 
1.7 2.3 10 
GF 1 4 
GF 4 4 
---- 
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isotropic, antisymmetric x, antisymmetric y or 
antisymmetric z. 

IS SiteA SiteB 1/2/3/4/5/6/7/8/9
  

Interaction strain, third integer represents Jxx, 
Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy or Jzz. 

SS Site 1/2/3/4/5/6 Spin-orbit coupling strain, second integer is the 
order. 

GS Site 1/2/3/4  G-factor strain, second integer represents x, y, z 
or isotropic. 

CS Site Rank Order Crystal field strain. 
OS Site Orbital reduction strain. 
 
****Fit block 
To fit experimental data, the “****Fit” block must be detailed. This block is very similar in 
syntax to the ****Survey block, however in place of the start, finish and number of steps, 
either the starting value for the parameter or the lower limit, starting value and upper limit is 
required. Before the beginning of the variable sub-blocks, the first line is either “Powell” or 
“Simplex”, specifying the fitting algorithm to be used. The example below would fit four 
different isotropic exchange couplings between different pairs of spins, and the isotropic g-
factor for sites 1 to 4, limited between 1.9 and 2.1, using the Simplex method. 
 
Note that only the parameters tied to variables in the ****Fit block will be altered in the 
fitting procedure and all other parameters defined in the input file are fixed. 
 

 
 
 
 
 

****Fit 
Simplex 
-2.0 
ex 1 2 4 
---- 
1.0 
ex 1 3 4 
ex 2 4 4 
---- 
1.5 
ex 1 4 4 
ex 2 3 4 
---- 
0.1 
ex 3 4 4 
---- 
1.9 2 2.1 
gf 1 4 
gf 2 4 
gf 3 4 
gf 4 4 
---- 
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****Params block 
Finally, the “****Params” block is used to choose the operation mode and other calculation 
options. Table 4.3.10 gives the options available in this section. 
 

Table 4.3.10 – ****Params block options 

Parameter Options/Syntax Comments 
Operation mode OpMode STR1 STR2 Selection of operation mode, STR1 and STR2 

are strings, see Table 4.3.10. Must be present. 
Magnetism approximation Approx Turns on the block diagonal approximation for 

isotropic systems. Default = Off. 
Monomeric impurity IMP N x Adds a monomer impurity of spin S = N/2, 

with fraction x, i.e. x = 1 for one uncoupled 
spin. Default = Off. 

Zero field splitting ZFS I J K … Alters the convention of 𝐵02 such that it equals 
𝐷. Any number of sites can be listed on the 

same line. Default = Off. 
Cubic crystal field Cubic I J K … Forces cubic CFP ratios for 𝐵44 and 𝐵64 based 

on 𝐵40 and 𝐵60. Any number of sites can be 
listed on the same line. Default = Off. 

Static magnetic field StaticB |B| X Y Z 
 

StaticB |B| θ φ 

Includes the presence of a static magnetic field 
of magnitude |B| Tesla, with vector (X,Y,Z) or 
polar coordinates (θ,φ) in degrees. Default = 

Off. 
Rotate reference frame Rotate N 𝛼 𝛽 𝛾 Rotates the reference frame (CFPs and or g) 

for site N, through the Euler angles 𝛼, 𝛽 and 𝛾, 
given in degrees. Default = Off. 

Rotate exchange frame EXRotate N M 𝛼 𝛽 𝛾 Rotates the exchange frame for the exchange 
defined between sites N and M, through the 
Euler angles 𝛼, 𝛽 and 𝛾, given in degrees. 

Default = Off. 
Number of CPU cores MaxCPU N Sets the upper limit of CPU cores available, N 

is an integer. Default = “MaxCPU cores-1”. 
Fitting algorithm display NoPrint Turns off the printing of fit progress to the 

terminal and intermediate results to disk. 
Default = Off. 

Full wavefunction printing FullWF Prints the full wavefunction in the states.res 
file. Default = Off. 

Save survey calculations Save Saves a file for each step of the survey 
calculation. Default = Off. 

Disable operator 
equivalent factors 

NoOEF Disables the Operator Equivalent Factors such 
that CF input values are assumed to contain θk. 

Default = Off. 
G-tensor multiplets Mults N A B C D … Gives the multiplicities of the multiplets for 

the calculations of pseudo-spin 𝑆̃ = 1
2
 states. N 
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gives the number of multiplets, followed by N 
integers giving the multiplicity. Default = Off. 

Single crystal experiment Single Circumvents checking for the need to integrate 
magnetic properties – i.e. requested single 

field direction is allowed. 
Default = Off. 

Percentage completion Percent Prints percentage completion for command 
line operation. Default = Off. 

Residual type Residual STR Selects residual calculation method. STR is a 
string, see Table 4.3.13. Default = Off. 

G-tensor direction residual GDir STR Selects which directions to include in the 
residual calculation for g-tensors (and 

directions). STR is a string of x, y, z or a 
combination thereof. Default = “GDir xyz”. 

Fitting algorithm vigour FitVigour X Sets how vigourous the fitting algorithm starts, 
as a parameter percentage. Default = 

“FitVigour 10”. 
Fitting algorithm limiting FitLimit X Sets how strongly the fitting algorithm 

enforces parameter limits. Limiting function is 
𝑒𝑋|∆|, where ∆ is difference between the fitting 

parameter and its limit. Default = “FitLimit 
12”. 

Fitting algorithm iteration 
limit 

FitIter N Sets an upper limit for the number of fit 
iterations. Default = no limit. 

Fitting algorithm tolerance FitTolerance X Sets the tolerance threshold for completing the 
fitting algorithm. Default = “FitTolerance 1E-

12”. 
Disable uncertainties in fit 

parameters 
NoUncertainties Disables the calculation of uncertainties in the 

fitting variables. Default = On. 
Orbital Reduction in 

Zeeman term 
ORedOnlyZeeman Restricts the application of the orbital 

reduction parameter to the orbital Zeeman 
term only. Default = Off. 

High-precision output HighPrec Prints results to machine precision. 
Default = Off. 

 
Table 4.3.11 – Operation modes 

OpMode Comments 
Sim STR2 Simulation; STR2 is a string, see below and Table 4.3.11. 
Fit STR2 Fit; STR2 is a string, see below and Table 4.3.11. 
Sur STR2 Survey; STR2 is a string, see below and Table 4.3.11. 
Coupling Report Reports the block diagonal structure of the matrix 
Matrix Elements Prints Hamiltonian matrix 
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The second required string is composed of letters representing the calculations to be 
performed. For example, “MS” would represent Magnetization and Susceptibility, whilst 
“LSG” would represent energy Levels, Susceptibility and G-tensors. The possible letters are 
given in Table 4.3.12. Note that a Simulation involving L (energy levels) will result in the 
printing of the wavefunction in states.res, that G and D are mutually exclusive and that the 
letter codes may be in any order (i.e. LMSG ≡ MGLS etc.). 
 

Table 4.3.12 – Operation mode STR2 

STR2 Comments 
L Energy levels 
M Magnetization 
S Susceptibility 
T Susceptibility Tensor 
G G-tensors 
D G-tensors with directions 
C MCE 
H Heat capacity 
E EPR 
Z Zeeman 

 
The number of directions used with the ZCW integration scheme is not a linear trend with 
ZCW level. Table 4.3.13 shows the number of directions for each ZCW level up to 20. 
 

Table 4.3.13 – Number of directions in ZCW integration 

ZCW Number 
0 21 
1 34 
2 55 
3 89 
4 144 
5 233 
6 377 
7 610 
8 987 
9 1597 
10 2584 
11 4181 
12 6765 
13 10946 
14 17711 
15 28657 
16 46368 
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17 75025 
18 121393 
19 196418 
20 317811 

 
The options for the residual types can be used to favour better fitting of particular regions of 
data. 
 

Table 4.3.14 – Residual types 

Residual type string Comments 
LowT Low temperature bias 
HighT High temperature bias 
LowB Low field bias 
HighB High field bias 
LowT/LowB Low temperature and low field bias 
LowT/HighB Low temperature and high field bias 
HighT/LowB High temperature and low field bias 
HighT/HighB High temperature and high field bias 
LowE Low energy bias 
HighE High Energy bias 

 
Data file specification 
Experimental data files follow similar formats for all experimental types; they are plain text 
files with extensions _sus.exp, _mag.exp, _mce.exp, etc. The general format is that the 
independent variable (field, temperature, etc.) is given in the first column, followed by 
columns with the corresponding experimental data where each column is a different data set 
(different temperature, field, frequency, etc.). For all experimental data files, there need not 
be a data point for every given independent variable; that is, for a particular data set some 
points may be missing, in which case any symbol of . or ! or ? or # or // or * may be given. In 
this way, the values of the independent variable need not be consistent between data sets, but 
the data file must have a fixed number of rows for each column. Note that there should be no 
blank lines at the end of the file. 
 
The specific layout for each experimental data type are given below. 
  
Susceptibility (_sus.exp): 
The first column represents the temperature in K and the subsequent columns represent the 
experimental data (χMT) in cm3 mol-1 K for the different fields as defined in the .input file, for 
example 0.01, 0.1 and 1 T respectively. 
 

 

T1 B1 B2 B3 
T2 B1 B2 B3 
T3 B1 B2 B3 
etc. 
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Magnetization (_mag.exp): 
The first column represents the magnetic field in T and the subsequent columns represent the 
experimental data (𝑀) in Bohr Magnetons per mole (𝑁𝐴𝜇𝐵) for the different temperatures as 
defined in the .input file. 
 

 
 
Magnetic Susceptibility Tensor (_tensor.exp): 
The first column represents the temperature in K and the subsequent columns represent the 
six unique elements of the χMT tensor (with the order χxxMT, χxyMT, χxzMT, χyyMT, χyzMT, χzzMT) 
in cm3 mol-1 K for the different fields as defined in the .input file. 
 

 
 
Magneto-caloric Effect (_mce.exp): 
The first column represents the temperature points in K and the subsequent columns represent 
the experimental data (−𝛥𝛥) in J kg-1 K-1 for the different magnetic fields. Note that the 
appropriate molecular mass must be defined in the ****Params block. 
 

 
 
Heat Capacity (_heat.exp): 
The first column represents the temperature points in K and the subsequent columns represent 
the experimental data (𝐶) in units of R (J mol-1 K-1) for the different magnetic fields. 
 

 
 
Electron Paramagnetic Resonance (_epr.exp): 
The first column represents the magnetic field points in T and the subsequent columns 
represent the experimental data (either integrated absorbance, absorbance, first derivative or 
second derivative) for the different frequencies and temperatures. The data should be 
normalized to the magnitude of the largest peak (positive or negative), at the first temperature 
in the input file. Note that the temperature is the inner loop and varies first, followed by the 
frequency. 

B1 T1 T2 T3 
B2 T1 T2 T3 
B3 T1 T2 T3 
etc. 

T1 B1,xx B1,xy B1,xz B1,yy B1,yz B1,zz B2,xx B2,xy B2,xz B2,yy B2,yz B2,zz 
T2 B1,xx B1,xy B1,xz B1,yy B1,yz B1,zz B2,xx B2,xy B2,xz B2,yy B2,yz B2,zz 
T2 B1,xx B1,xy B1,xz B1,yy B1,yz B1,zz B2,xx B2,xy B2,xz B2,yy B2,yz B2,zz 
etc. 

T1 B1 B2 B3 
T2 B1 B2 B3 
T3 B1 B2 B3 
etc. 

T1 B1 B2 B3 
T2 B1 B2 B3 
T3 B1 B2 B3 
etc. 
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Energy levels (_levels.exp): 
The format for this file is one floating point value per line, for each energy level, given in 
wavenumbers. 
 

 
 
G-tensor (_G.exp) 
This file is used to define the experimental g-tensors used for the fitting and survey modes. 
The file consists of lines with three  or twelve values, defining either 𝑔𝑥, 𝑔𝑦 and 𝑔𝑧 or 𝑔𝑥, 
𝑔𝑦, 𝑔𝑧, 𝐷𝑔𝑥

𝑖 , 𝐷𝑔𝑥
𝑗 , 𝐷𝑔𝑥

𝑘 , 𝐷𝑔𝑦
𝑖 , 𝐷𝑔𝑦

𝑗 , 𝐷𝑔𝑦
𝑘 , 𝐷𝑔𝑧

𝑖 , 𝐷𝑔𝑧
𝑗 , 𝐷𝑔𝑧

𝑘  for each Kramers doublet, where 

𝐷𝑔𝛼
𝑖 , 𝐷𝑔𝛼

𝑗 , 𝐷𝑔𝛼
𝑘  is the unit vector denoting the direction of 𝑔𝛼. Each line represents the 

diagonalized g-tensor for a pseudo-spin 1/2 Kramers doublet. Therefore, the number of g-
tensors must be less than or equal to half the total dimension of the problem. 
 

 
 
or 
 

 
 

4.4 Output files and interpretation 
 
PHI outputs information regarding the operation of the program and the type of calculations 
it is performing to stdout (shell, command prompt or terminal). This is redirected to the GUI 
output panel, however when running PHI without a GUI, this can be directed to a specified 
output file by appending, for example, “> test-job.out” to the execution command, so that it 
would read on Linux “./phi_vx.x_linux64.x test-job > test-job.out”. PHI writes all calculated 
data to files in the working directory of the job, in the files described below. Note that the 

B1 F1,T1 F1,T2 F1,T3 F2,T1 F2,T2 F2,T3 
B2 F1,T1 F1,T2 F1,T3 F2,T1 F2,T2 F2,T3 
B3 F1,T1 F1,T2 F1,T3 F2,T1 F2,T2 F2,T3 
etc. 

E1 
E2 
E3 
E4 
etc. 

gx1 gy1 gz1 
gx2 gy2 gz2 
gx3 gy3 gz3 
etc. 

gx1 gy1 gz1 Digx1 Djgx1 Dkgx1 Digy1 Djgy1 Dkgy1 Digz1 Djgz1 Dkgz1 
gx2 gy2 gz2  Digx2 Djgx2 Dkgx2 Digy2 Djgy2 Dkgy2 Digz2 Djgz2 Dkgz2 
gx3 gy3 gz3  Digx3 Djgx3 Dkgx3 Digy3 Djgy3 Dkgy3 Digz3 Djgz3 Dkgz3 
etc. 
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naming of the files is identical to that of the .exp input data files – the job name is appended 
with an underscore to the following output files, for example “test-job_mag.res”. 
 
sus.res, tensor.res, mag.res, mce.res, heat.res, epr.res, levels.res and G.res specification 
Data is written to this file in exactly the same format as the input .exp files. 
 
zeeman.res specification 
This file contains the results from a calculation of a Zeeman plot. The file consists of 
𝑑𝑑𝑑 + 1 columns, where dim is the dimension of the total Hilbert space of the system. The 
first column contains the magnetic field strength (𝐵) in Tesla, followed by the corresponding 
energy for each state in the system in wavenumbers. 
 
survey.res specification 
This file contains a number of columns, one for each operator defined in the ‘****Survey’ 
block and one more, the final column, which represents the residual for the parameter set 
defined by the row, noting that the columns are ordered as the variables in the ‘****Survey’ 
block. 
 
states.res specification 
This file is produced when a simulation of the energy levels is requested and contains 
information regarding the wavefunction and energy levels and transition probabilities, J-
mixing and g-tensors, if applicable. In the full calculation case, the wavefunction is printed in 
a matrix type manner, with row and column headers. The first column contains the row 
headers which are the basis elements in which the Hamiltonian was constructed, i.e. the 
single ion states. The subsequent columns are the different eigenstates of the system, with the 
column headers displaying the energies in wavenumbers. The columns show the expansion 
coefficients for the basis states that comprise the given eigenstate. Unless “FullWF” is 
selected, coefficients below 1×10-10 are not printed. In the case of wavefunctions with 
imaginary components, two matrices are printed; the top one being the real part of the 
coefficients and the bottom one being the imaginary components. Below this are shown the 
percentage contribution of each basis state to the wavefunction. For anisotropic systems, the 
transition probabilities between the states are printed – note that this matrix is symmetric. For 
single lanthanide ions calculated under the simple input method, the wavefunction is also 
transformed into the �𝐽𝑖 ,𝑚𝐽𝑖

〉 basis and is printed in the same manner as that for the regular 
wavefunction. If the g-tensor calculation is appropriate, the diagonal g-tensors are printed 
along with their directions in the internal coordinate system. 
 
In the approximation mode, a list of the intermediate and final spin states along with their 
energies are provided. Additionally, the effective g-values for the coupled spin states and the 
spin projection coefficients for each metal site are given. 
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4.5 Use of the GUI 
 
Figure 4.5.1 shows a screenshot of the GUI in operation under Windows 7. The interface is 
divided into three sections. The main left pane is for PHI input, the upper right pane is for 
displaying results and the lower right pane shows the PHI output including error messages. 
The settings window allows the user to change various display options, and are saved 
between sessions, including the window size and position, and last working directory. 
 
When simulating EPR spectra, in addition to the calculated EPR data, the orientation-
dependent Zeeman spectra are shown along with the most intense EPR transition for each 
frequency. The direction can be chosen using the slider below the plot. 
 
The ‘Copy .res to .exp’ button in the Tools menu provides the user the option to 
automatically copy the calculated data to experimental files, overwriting any existing 
experimental data (be careful!). This facilitates comparison between different parameter sets 
or for testing how sensitive a parameterisation is to specific features. 
 
The ‘Save plots’ button in the Tools menu saves the active plots as .pdfs for editing or 
publication in vector format. 
 

 
Figure 4.5.1 – Screenshot of PHI in operation on Windows 7 

 
 

4.6 Examples 
 
Cu(OAc)2 
The classic Cu(II)2(OAc)4 dimer, originally investigated by Bleaney and Bowers47 and 
subsequently by Gerloch et al.,48 shows a strong decrease in the χMT vs. T data with a 
reduction in temperature. Such behaviour originates from anti-ferromagnetic superexchange 
between the Cu(II) ions, leading to an S = 0 ground state. To investigate the magnitude of the 
superexchange interaction, a fit of the χMT vs. T data to a single-J isotropic HDVV spin 
Hamiltonian with a variable g-factor in the Zeeman Hamiltonian, was performed. The entire 
input file required to perform this calculation with PHI is presented to highlight the simplicity 
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of such operations, Figure 4.6.1 (inset). This analysis found a very good fit to the 
experimental data, Figure 4.6.1, with a coupling constant of J = -144.6 cm-1 and g = 2.12. 
 

 
Figure 4.6.1 – Magnetic susceptibility of the Cu(II)2(OAc)4 dimer in a field of 1 T, the solid line is a fit to the 

data using the parameters in the text. Inset: Entire PHI input file required to perform the calculation. 
 
Modelling high-spin octahedral Co(II) ions 
Summarising section 2.2, the PHI Hamiltonian is given by Equation 4.6.1. 
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𝑖,𝑗∈𝑁

𝑖<𝑗

+  � � � 𝜎𝑖𝑘𝐵𝑘
𝑞
𝑖𝜃𝑘𝑂�𝑘

𝑞
𝑖

𝑘

𝑞=−𝑘𝑘=2,4,6

𝑁

𝑖=1

 

+ 𝜇𝐵��𝜎𝑖𝐿��⃑ 𝑖 ⋅ 𝐼 ̿+ 𝑆⃑̂𝑖 ⋅ 𝑔𝚤� � ⋅ 𝐵�⃑
𝑁

𝑖=1

 

(4.6.1) 
 

By default all 𝐿𝑖 = 0, 𝜆𝑗𝑖 = 0, 𝜎𝑖 = 1, 𝐽𝚤𝚤��� = �
0 0 0
0 0 0
0 0 0

�., 𝐵𝑘
𝑞
𝑖𝜃𝑘 = 0 and 𝑔𝚤� = �

2 0 0
0 2 0
0 0 2

�. 

 
To treat high-spin octahedral Co(II), we will use the T≡P equivalence (isomorphism) 
method,19 which uses a fictional orbital angular momentum of L = 1 to model the triplet 
orbital state. In this approach, we set 𝑆1 = 3

2
, 𝐿1 = 1, 𝜆11 ≈ −171.5 𝑐𝑐−1 and 𝜎1 = −3

2
, 

leaving other parameters as default. This can be done as follows: 
 

****Ion 
Cu(II)Oh 
Cu(II)Oh 
****Fit 
Simplex 
-50 
EX 1 2 4 
---- 
2.00 
GF 1 4 0 
GF 2 4 0 
---- 
****Sus 
Bsus 1 
****Params 
OpMode Fit S 
****End 
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Or equivalently: 
 

 
 
The latter approach using the ****Ion block engages (only) the constants given in Table 
4.3.1. In either case, the parameters are modified in the same way, by changing the values 
with the blocks. For example: 
 

 
 
Or equivalently: 
 

 
 
In the latter case, the use of the ****SOCoupling and ****OReduction blocks overrides the 
defaults switched on by the ****Ion block. 
 

****Spin 
3 
****Orbit 
2 
****SOCoupling 
1 -171.5 
****OReduction 
1 -1.5 
****Paramps 
OpMode Sim L 
****End 

****Ion 
Co(II)Oh(w) 
****Params 
OpMode Sim L 
****End 

****Spin 
3 
****Orbit 
2 
****SOCoupling 
1 -160 
****OReduction 
1 -1.0 
****Params 
OpMode Sim L 
****End 

****Ion 
Co(II)Oh(w) 
****SOCoupling 
1 -160 
****OReduction 
1 -1.0 
****Params 
OpMode Sim L 
****End 
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In order to employ an orbital reduction factor with a high-spin octahedral Co(II) site, we 
probably want to do something like Equation 4.6.2 (i.e. this is what would be written in a 
manuscript). 
 

𝐻�𝑍𝑍𝑍 = 𝜇𝐵��−
3
2
𝜅𝑖𝐿��⃑ 𝑖 ⋅ 𝐼 ̿+ 𝑆⃑̂𝑖 ⋅ 𝑔𝚤� � ⋅ 𝐵�⃑

𝑁

𝑖=1

                                  (4.6.2) 

 
However in PHI the Hamiltonian is fixed as Equation 4.6.3. 
 

𝐻�𝑍𝑍𝑍 = 𝜇𝐵��𝜎𝑖𝐿��⃑ 𝑖 ⋅ 𝐼 ̿+ 𝑆⃑̂𝑖 ⋅ 𝑔𝚤� � ⋅ 𝐵�⃑
𝑁

𝑖=1

                                      (4.6.3) 

Therefore, we must use 𝜎𝑖 = −3
2
𝜅𝑖. Then, if 0 < 𝜅𝑖 ≤ 1 we have 0 > 𝜎𝑖 ≥ − 3

2
, 

corresponding to the limits of full orbital reduction and no orbital reduction, respectively. 
This follows the notation of Lloret et. al. (section 3.1.1.1 of reference 19), where the origin of 
𝜅 ≤ 1 and changes in the −3

2
 factor (referred to as A) are described, where both factors are 

combined together to avoid over-parameterization (i.e. a rise in one is compensated by a fall 
in the other, so they cannot be fitted independently to find a unique solution). 
 
Note that PHI must be fully general and permit application to true orbital states, therefore 𝜎𝑖 
can also be the real orbital reduction factor (i.e. 𝜎𝑖 = 𝜅𝑖) and take the range 0 < 𝜎𝑖 ≤ 1 in 
other cases. 
 
Back to high-spin octahedral Co(II); in this case we implicitly assume the geometry is 
perfectly octahedral, however this is rarely true. Therefore, we can model the distortions from 
octahedral symmetry with effective crystal field parameters acting on the fictional orbital 
angular momentum, representing a splitting of the t2g orbitals. For example, high-spin axially 
distorted octahedral Co(II), could be described with Equation 4.6.4, and modelled in PHI as 
below. 
 

𝐻� =  𝜎𝜎𝐿��⃑ ⋅ 𝑆⃑̂ + 𝜎2𝑣 �3𝐿�𝑧
2 − 𝐿�2� +  𝜇𝐵 �𝜎𝐿��⃑ 𝑖 ⋅ 𝐼 ̿+ 𝑆⃑̂𝑖 ⋅ 𝑔𝐼�̿ ⋅ 𝐵�⃑              (4.6.4) 

 
where 𝜎 is the combined orbital reduction parameter (𝜎 = −3

2
𝜅) 

𝜆 is the SO coupling parameter 
𝑣 is the axial distortion parameter 
𝑔 is the isotropic spin g-value 

 



52 
 

 
 
Or equivalently: 
 

 
 
 

4.7 Testing 
 
The “Coupling Report” Operation Mode is provided to inform the user of the block diagonal 
structure of the HDVV Hamiltonian matrix in a coupled total spin basis, without performing 
any demanding calculations. It is useful to check to see the requirements of large problems 
and determine whether it can be solved on the available hardware.  

****Spin 
3 
****Orbit 
2 
****SOCoupling 

1 𝜆 
****OReduction 

1 𝜎 
****CrystalField 

1 2 0 𝑣 
****GFactor 

1 𝑔 
****Params 
OpMode Sim L 
****End 

****Ion 
Co(II)Oh(w) 
****SOCoupling 

1 𝜆 
****OReduction 

1 𝜎 
****CrystalField 

1 2 0 𝑣 
****GFactor 

1 𝑔 
****Params 
OpMode Sim L 
****End 
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5. Bugs and Feedback 
 

 
The development of PHI is an on-going process, which the author hopes will continue with 
the advent of new technologies and/or interfaces, which may enhance the computational 
power available to the user. The author welcomes any bug reports, feature requests, 
comments, suggestions or queries about the code. Please address all correspondence to 
nfchilton@gmail.com. 
 
Please keep in mind that the code is continually under development and bugs may still be 
present. Updated source code and binaries are uploaded to www.nfchilton.com/phi regularly. 
  

mailto:nfchilton@gmail.com
http://www.nfchilton.com/phi
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