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Electrons &



» Movement of electrons (current) generates a magnetic field
(orbital magnetic moment)

» Orbital moment is inherently physical — occurs due to
physical motion

Electrons




» Intrinsic ‘spin’ of the electron creates a magnetic moment
(spin magnetic moment)

Note: the depiction of
electrons spinning on
their axes is just a
pictorial representation,
as electrons do not have
physical dimensions!

» Spin moment is non-physical — the spin degree of freedom
exists in an isolated space

Electrons




Wavefunctions and
Hamiltonians




» The Wavefunction encodes all information about the system
» Determines behaviour in future

» Probabilistic interpretation

HY = EY¥
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Wavefunctions and Hamiltonians




»Ab-initio approaches consider the entire picture of all
electrons within a molecular orbital basis

» The full Hamiltonian contains all the interactions of the
system (within some approximations and simplifications)
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Wavefunctions and Hamiltonians




Spin Hamiltonians




» The Spin Hamiltonian approach approximates the complete
Hamiltonian with an effective Hamiltonian

» We limit our description of the system (molecule) to only the
paramagnetic ion(s)

» Simplifies the analysis

» Inherently phenomenological (meaning parameters must be
determined from experiment and not known ab-initio)
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Spin Hamiltonians




Free Atoms (lons)




» We consider only a subspace of the total wavefunction,
based on the single configuration approximation

3d? € {3d? 3d'4s1,etc.}

» Furthermore, within the single configuration approximation,
we consider only the total spin and orbital terms (Russell-
Saunders or LS coupling)
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Free Atoms (lons)




» These terms are separated in energy by the electron-
electron repulsion (Coulomb term)

» The terms only specify the angular components of the
wavefunction

» Integrals over the radial components are absorbed into the
Spin Hamiltonian parameters

Free Atoms (lons)




» In this case, we only consider the ground term

» Why? Magnetic measurements are thermodynamic
guantities, accessible energies are set by the temperature

» Properties determined by low-energy structure

» Different when considering spectroscopic properties

Free Atoms (lons)
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Hund’s Rule




» How do we determine the ground term?
» Take the configuration 3d?

» Place electrons in orbitals following the Pauli exclusion
principle (no electrons with same set of quantum numbers)
and Hund'’s Rules (largest S and L)
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Free Atoms (lons)




» We have two magnetic moments — spin and orbital and we
know that magnetic moments affect each other...

» We get spin-orbit coupling, which is actually a relativistic effect

» Couples spin and orbital momentum of single electrons

H\SOZE(li.SizAL.S
l

» Becomes more important with heavier elements

» Often treated as a perturbation to terms
Free Atoms (lons)
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Ordering of multiplets
determined by sign of SO
coupling




»A > 0 for a less than half filled shell

» A < 0 for a more than half filled shell

» Therefore, the maximum J is the ground state for ions with a
more than half filled shell

Free Atoms (lons)




SO splitting larger due to
higher mass

A’Ti(”) ~ 155 Cm_l, ANL'(II) ~ —315 Cm_l

e 3 2,270 cm’!

/ Ni(11)

d8 configuration,
_ — 3F 1,361 cm’’ analogous to d?

\ Ordering of multiplets
\ reversed

°F



Crystal Fields &



» The effect of ligands due to bonding and electrostatic
interactions cannot be ignored

» Strikingly different effects for metals in different blocks

» Ligands strongly interact with 3d orbitals
Hpr ~ Her > Hso

» Ligands only weakly influence 4f orbitals
HEE > HSO > HCF

» Intermediate behaviour for 4d, 5d and 5f

HEE ~ HSO ~ HCF

Crystal Fields




3d Crystal Fields




»

Octahedral coordination, O, symmetry

»

»

»

»

tzg

Depending on strength of splitting, this can redefine orbital
population and therefore changes the terms

Splitting depends on symmetry
Distortions can be perturbations
For 3d ions in complexes, we must therefore consider:

> the coordination geometry
> if the ion is ‘high-spin’ or ‘low-spin’

3d Crystal Fields




» For Fe(lll) in an octahedral environment, there are two

options:

Crystal field terms

3d Crystal Fields




» Think about the t,, orbitals:

Z

3d Crystal Fields




» What about for tetrahedral Fe(lll)?:

29 | 29

3d Crystal Fields




»So for cubic Fe(lll):
»°A term:S=>/,,L=0

»2Ty), term:S=1/,, L="?

» Cubic triplet terms have first order orbital angular
momentum, but do not easily correspond to free-ion terms...

3d Crystal Fields




T, P Equivalence |§



» The matrix elements of orbital angular momentum are the
same for cubic triplet terms and P terms

»So we can treat triplet termsasL=1

» However, there is a catch: T # P, therefore we need a
constant of proportionality, A

»For T, terms A =-1
»For T, terms A = -3/,

T, P Equivalence




» Strong crystal field interaction means substantial orbital
mixing

» Low symmetry distortions also affect orbitals

» While spins are not affected (unless d electrons form bonds),
the effective orbital moment is reduced

» This is known as orbital reduction, k

»0 < k<1andis lower for stronger covalency

» Typically, 0.70 £ k < 0.95

» Together with the T, P constant, 0 = kA

» Often regarded as a ‘fudge factor’, but can sometimes
contain very important science

T, P Equivalence




Af Crystal Fields &



» The 4f orbitals are well shielded by the full 5s and 5p orbitals
» Therefore, 4f orbitals A
[
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Exchange



» Magnetic interactions between paramagnetic ions can be
due to a number of physical phenomena:

» Direct exchange (overlap of magnetic orbitals)
» Super exchange (interaction through diamagnetic bridge)

» Dipolar interactions (through space)

» Orbital moment interactions are very complex and will not
be covered

Exchange




» These interactions lead to isotropic, anisotropic and anti-
symmetric components

» Almost impossible to completely unravel without a
combined magnetic and detailed spectroscopic analysis

» We will focus on isotropic interactions only

Exchange




» Isotropic interaction between two spins is simple:
»Spins are parallel (ferromagnetic)
» Spins are anti-parallel (anti-ferromagnetic)

» Both states exist, just one is more energetically stable than
the other

» The magnitude of the exchange interaction sets the gap
between these two possibilities

» Only care about the relative energies, hence we do not need
to know the (real) absolute energies!

» This is why we can essentially ignore the rest of the
molecule!

Exchange




» Easy to see the effect on the system:
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Exchange




» Interaction between multiple spins becomes complicated
(hence PHI!)

» Many possible configurations of individual spins
» Frustration, degeneracy, etc.

» Leads to total spin of cluster

» Exchange for 3d ions from 1 —100’s cm™
» Exchange for 4f ions from < 2 cm? (usually)

Exchange




Zeeman Effect §



» A magnetic field will cause magnetic moments to align

»In other words, moments anti-parallel to the magnetic field
are in a higher energy state than those parallel to the field
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» This effect gives rise to all magnetic observables, makes
NMR, MRI, EPR, etc. possible /eeman Effect




Energy (cm‘1)

» Only a linear effect when the magnetic field is small
compared to the interactions within the system

» Can be anisotropic and non-linear in low field as well!
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The Spin Hamiltonian §



..but first some terminology




» Operator
» Mathematical function which changes an object

» Eigenvector (Eigenfunction)
» A combination of basis states
» Eigenvalue

» The energy corresponding to an eigenvector

» Wavefunction
» Collection of eigenvectors of the Hamiltonian

» Basis
» Complete set of possible states

» Ket

» A vector (usually a unit vector of one of the basis states)

Terminology




..and some notation §



» A

» Scalar

» A

» Operator

vA = (44 4, 4,)

» Vector operator

»Ag

» Component of vector operator

» A

» Matrix

Notation




The Spin Hamiltonian §



HY = EY
H = Hgo + Hgy + Hypp + Hep

Spin-orbit

. Crystal Field
coupling

Exchange

Zeeman effect

The Spin Hamiltonian
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The Spin Hamiltonian
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Count pairs

only once
Operators

Exchange

Sum over all parameters
ions

HEX — H(an)iso + Hanti

The Spin Hamiltonian
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The Spin Hamiltonian
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The Spin Hamiltonian
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(containing
Sum over all Crystal field orbital
ions parameters reduction
parameter)
Components of the crystal field as limited
. . Operator
by symmetry, parity and the single al
configuration approximation equivalent
factors

The Spin Hamiltonian




» The Crystal Field Hamiltonian is very closely related to the
common Zero Field Splitting Hamiltonian of EPR

2 n 1 n A
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» Therefore,
D

B70, = —
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B0, = E

The Spin Hamiltonian




» However, it is important to note that spin magnetic moments
are not directly perturbed by the environment!

» Remember, spins don’t exist in ‘real space’ and so the ZFS of
a spin ground state is due to the fact that it isn’t completely
a ‘spin only’ state!

» Mixing with excited states that have orbital components (and
therefore CF interactions) is the origin of the ZFS

» It is just convenient to parameterize it in the same way as
the CF

The Spin Hamiltonian




The Wavefunction




» How to solve the equation? How do we find Y?

» We know the term(s), therefore we know the spin and
orbital components

m; =—-L,-L+1, .. L-1L
ms =-95,-5+1,...,8§—-1,§

» We construct a space with all the possible combinations
(Hilbert Space)

The Wavefunction




»3F term of Ti(ll): S=1,L=3
» Therefore, m¢=-1,0, 1
andm,=-3,-2,-1,0,1, 2,3

» The total number of combinationsis 3 x7 =21
»In general, the dimension of the Hilbert space is

N
dim = H(Zsi +1)(2L; + 1)
[

= (25; + DL, + 1D2S, + DL, + 1) ...

» Each of these different combinations is orthogonal — that is,
all elements of the set are unique

The Wavefunction




» This defines what is called a ‘basis’

» The ‘basis states’ are the different combinations of m, and
mg

» They are often written in bra-ket notation
mp, mS) = |(1), L: S! mp, mS)

»where w denotes any other quantum numbers to identify
the state uniquely

» So for our example,

m, mS) = |3d2; 3;1) my, mS)

The Wavefunction




» Each basis state or basis ‘ket’ is just like a vector
» The basis vectors for 3D space are the x, y and z axes:

%), [y), 12)

» They are orthogonal, like the basis states

» Any point (state) within 3D space can be composed of these
basis states:

U=al|x)+ bly) + c|z)

» Similarly for our Wavefunction:

dim

Lp — Z CilermS>i
l

The Wavefunction




» The action of the Hamiltonian on these basis states mixes
them together

» We find a solution for the mixed states that satisfy the
Schrodinger equation

» This is done by evaluating the matrix representation of the
Hamiltonian and diagonalizing it to find the solution

» The diagonalization procedure necessarily finds eigenvectors
that are orthogonal

» That is, the mixtures of the basis states are also orthogonal,;
therefore the action of the Hamiltonian is simply a rotation!

» This is the foundation of Matrix Mechanics

The Wavefunction




» The matrix representation of the Hamiltonian spans the

Hilbert space of the problem
A NN~ — = e e
I e I e e e e R B e e s I e e M

(=3,-1] = (-3,-1|H-3,~1) .

(-3,0] = (=3,0lH|-1,1)

(=3, 1]

(-2,-1

<_2>O| A 7 1

<_2’1| = (-1,-1|H]-2,-1)

-L-1 The Wavefunction

(~1.0]



»So what is
/ | 1T
<mL9 mS‘H‘mLa mS>
» It is a matrix element; just a number

» It is determined by the Hamiltonian operating on the basis
ket, followed by the inner product with the bra

The Wavefunction




Angular Momentum  §



» While spin and orbital angular momentum are
fundamentally different, they obey the same rules

» Operators act on angular momentum states

» States that are not altered by the operator are eigenstates of
that operator

;ims) = mglms)
+|mS> = JS(S—I— 1) — mg(mS + 1) |mS + 1>

_Ims) = JS(S+1) —ms(ms — 1) jms — 1)
=4 (5.+5)
)= $(8.-5)

LA

L N
|

>

Angular Momentum




» Determining the matrix elements of simple operators is
straight forward

<m/La mls Sz‘mLp mS>

= mg(my,mg|/mp,ms)
o)

» The Kronecker delta is equal to one if the two variables are
the same, otherwise it is zero

= MO 1) 1, O mlyms

»So this element equals mg if mg’ = mg andifm;" =my ,
otherwise it equals O.

Angular Momentum




» Operators only act on the part of the function they represent
Szlmy, ms) = 1lmp) & S;|mg)

»Or

$1,52,msy,ms,) = S1,lms,;) ® Sz, [ms,)

» Think of them as independent ‘spaces’

» We just write them together for convenience

Angular Momentum




» Our Hamiltonian contains terms like

» The dot product expands to read

L-S=L,S,+L,S,+L,S,
= %z 1,. . o A A
L-$=2 (LyS_+L_S,)+1L,S,

» The operators are then applied as shown previously

Angular Momentum




» Thus, the matrix elements of the term
L-S
» Are easily evaluated as

A A

<mL | mg ,| [% (L,S_+L_S,)+ ZZSZ]

mL,mS>

1 / Il ~ A 1 / Il ~ A 4 /
=§<mL , Mg |L+S_|mL,mS>+§<mL , Mg |L_S+|mL,mS>+<mL , Mg

A

ZZ‘S‘Z

mL; mS)

:%\/S(S+1)—m5(m5—1)\/L(L+1)—mL(mL+1)5 ' 6

mp, mp+1 mg mgs—1

+2SEH D) —mGms + DYLG + D —mylm, — D8+ &

m; mp—1 mg mg+l

+mem;6 o+ &
mL ,my, mS ,mmg

Angular Momentum



» OK, so how about an example...
» Consider a single octahedral Ni(ll) ion

++

A

O

» No orbital degeneracy, S=1

Angular Momentum




» We would like to examine an axial zero field splitting

P

S |
H=D SZZ—§S(S+1)

» So what are our basis states?

Img ) = |[Ni¥,3d8, °A,1,mg)

»Remember, mg = -5,-5+1,...,5—1,§
me = —1,0,1

» And what does our matrix look like?

Angular Momentum




» The Hamiltonian matrix

AN

(a1 (1]H|o)  (1]H|-1)
(0lH|1)  (o[H|o)  (o]H|-1)

(-1]H[1)  (-1H[0) (-1]H|-1)

Angular Momentum




» Our matrix elements all have the form

<m5’ [D (522 — %5(5 + 1))] m5>

» And are easily evaluated...
1 |G2 1 /
= D(mg' [SZ|ms) + D —§S(S + 1) | {mg'|mg)

1
= Dm5m55msr’ms + D (—§S(S + 1)) 5mS’:mS

1
=D <m5m5 —§S(S + 1)) 6mS,rmS
Angular Momentum
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0

(-1|H[-1)

Angular Momentum




2
=D (mSmS — —) 6mS,rmS

2 0 0
3
2D 0
) 3
D
i 0 0 3 i

Angular Momentum




» How about another example?
» Consider a dimer of octahedral Cu(ll) ions

H+

£

S

» No orbital moment in octahedral E terms, S =1/,

Angular Momentum




» Think about the e, orbitals:

Z

3d Crystal Fields




» We would like to examine the exchange interaction

H=-2J§; -85,

» So what are our basis states?

1 1
Ims,, mg,) = ‘Cu”l,3d9, ZE,E,m51> ® ‘Cu”z,Bdg, ZE,E,m52>

»Remember, mg = -5,-5+1,...,5—1,§

N | =

1
meq = —E,

» And what does our matrix look like?

Angular Momentum




» The Hamiltonian matrix

ealilzs)  Galilz-2) G
2 -2lfl22) -2lflz-3) -3
~23llz3) (22l -3) (=
(-2 -2lf2:9) (232 -3) (2

M3 a3
o34 (-H-4-
-5 bbb
a3 (4 -H-4 -3

Angular Momentum




» We need the matrix elements, so let’s expand our operator...
_213'1 : Sz — —ZJ(SAlxgzx + glygzy + 5‘125‘22)

> 2 1. . . A n A
—2J§, -8, ==2] (E (81,8, +$1.85, )+ 512522)

» Therefore our matrix elements have the form

(s, ms,| 21 (3 (S1,82_ + $1_82,) + 81,82, | |ms, s,

Angular Momentum




» These are easily evaluated as before

(s, s, [<2 (3 (50,8 +$1_82,) + 81,82, )| [ ms, s,

1 ! AWa A 1 , 1A R
=-2] (E <m51 , Mg, |51+Sz_|m51,m52) + E<m51 , Mg, 51_52+|m51,m52)>

+<m51,’ mg, ’ SlZSAZZ |m51’ mSz)

1
E\/Sl (Sl +1) - Mms, (m51 + 1) 52 (52 +1) - ms, (mSZ - 1)6m51’,m51+16m52’,m52—1

= -2 1
] +§\/Sl(51 + 1) - msl(msl - 1)\/52(52 + 1) - mSZ (mSZ + 1)5m51’,m51—15m52',m52+1

+m51 mSZ 6m51 "msl 6m52 "mSZ

Angular Momentum




ealilza) e alilz-2) G
2 -2lfl22) -2lflz-3) -3
~23llz3) (22l -3) (=
(-2 -2lf2:9) (232 -3) (2

So what is this element?

M3 a3
o34 (-H-4-
-5 bbb
a3 (4 -H-4 -3

Angular Momentum




@% [_2] (% (§1+§2_ + ~§1_§2+) + 3‘125‘22)] |%%>

1
))7’)’151 — mSZ — mgl — mSZ =5

1
E\/S1 (Sl +1) - Mms, (m51 + 1) 52 (52 +1) - ms, (mSZ - 1)6m51"m51+18m52"m52‘1

) 1
] +§\/Sl(51 + 1) — mS1(m51 — 1)\/52(52 + 1) — mSZ (mSZ + 1)5m51/’m51—16m52”m52+1

+m51m52 6m51 ’,msl 5m52',m52

Angular Momentum




[

1 1/1
> + 1) — Mg, (m51 + 1) E(E + 1) — Mg, (msz - 1)6m51',m51+16m52',m52—1

(5+1
2

)= 3

+mg, mg, 0

+ 1) - mSZ (mSZ + 1)5m51’,m51—15m52',m52+1

)

!/ !
msy Mgy ~Ms, Ms,

Angular Momentum
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Angular Momentum
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Lo Galrlz-a)/ 6
A33) G-3laly-3) &
(-33l815.9) ((-331813.-3) ) (2
31A13.3) (3.~ 5 15 -3) (-3

What about this one?

Hel-34 Gble-3-3
Wik-bd) bk
-3 (3ak-b-Y
3-8 a3 -3

Angular Momentum




1
E\/S1 (Sl +1) - Mms, (m51 + 1) 52 (52 +1) - ms, (mSZ - 1)6m51"m51+18m52"m52‘1

) 1
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Angular Momentum




[

1 1/1
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2

)= 3

+mg, mg, 0

+ 1) - mSZ (mSZ + 1)5m51’,m51—15m52',m52+1

)

!/ !
msy Mgy ~Ms, Ms,

Angular Momentum

)

/




1 1 1 \
271 = () ((-2) 1) sy s, 18ms, sy

Angular Momentum




<—%,%| [—2] (% (~§1+~§2_ + ‘§1—‘§2+) + SleZZ)] |7’_7>

TG0 () )




SR
33 -3iet-3 -4
SHISTNEEIES

Angular Momentum




SR
33 -3iet-3 -4
SHISTNEEIES

Angular Momentum




Angular Momentum




Angular Momentum




0
2[Al7.-2)
=/
~21fl2:-2) (-

Angular Momentum




N |~

Angular Momentum




N |~

Angular Momentum




N | S~

Angular Momentum




N | S~

Angular Momentum




N | S~

Angular Momentum




Angular Momentum




Angular Momentum




N | S~
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» Eigenvalues and eigenvectors are:

RN (I ) I (0 s
2 Va2 T2 T2 2 ﬁ(‘i"z“‘z'z

» Therefore, we have three states at E = — é (triplet)

» And one state at E = 3?] (singlet)
Angular Momentum




Linear Algebra |



» The process of diagonalizing the Hamiltonian is tricky, but
the idea is simple

» Any real symmetric or complex hermitian matrix (A) can be
brought to a diagonal form by an invertible matrix (P)

A = PDP!

» The diagonal values of D are the eigenvalues (energies) of
the system, while the columns of P specify the mixtures of
the basis states that comprise the eigenvectors
(wavefunctions)

» Can be done for small matrices analytically, but we usually
use computers to do this numerically!

Linear Algebra




Magnetic properties |§



» From diagonalization of the Hamiltonian matrix we get:
» Eigenvalues (state energies)
» Eigenvectors (state vectors / wavefunctions)

» Fundamental relationships:

0E
0B

M «

oM

“_
X 9B

Magnetic Properties




» Magnetization

0E

M «
dB

dim

M, == >
* (Zug

1=1

Brief stat. mech. Reminder:

Partition function

Boltzmann population factor

OF;/ —Ei

ekBT
0B,

Remember:
Energy levels are
functions of the

magnetic field!

Magnetic Properties




» Magnetization
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» Magnetization

Energy (cm'1)
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» Slightly easier to implement... Dependent on direction of B

kBTa]nZ
Moo=~

,UB a B(X Dependent on two directions!

 NykyT9%InZ
X@P)™ 710 9B.IR;

Xxx Xxy Xxz
Xyx Xyy Xyez
Xzx Xzy Xzz

» Therefore, generally a 3 x 3 tensor y =

» Simplifies to a scalar if isotropic
Magnetic Properties




Powder Integration




» Isotropic systems:
» All directions are equivalent
» Properties need only be evaluated for one direction

» Anisotropic systems:
» Directions are inequivalent
» Properties must represent experiment
» Single crystal or powder experiment

» Susceptibility can be averaged over x, y and z

» Magnetization must be averaged over the hemisphere
» Due to the inversion symmetry of the magnetic field

Powder Averaging




Approximations



» Matrix diagonalization is expensive
» Effort scales « dim3

» If anisotropic we must diagonalize a very large number of
matrices!

»dim < 500, no problem

»500 < dim < 2000, can be done with patience

»dim > 2000, now that’s a boring day...

» Hence, some simplification might be nice!
Approximations




» For isotropic systems only, there is a way...

» The isotropic exchange Hamiltonian matrix is block diagonal
in a total spin basis!

i jEN
Hiso = —2 Z ]ijSi ' Sj
i<

e o
St, 87,8k, mgt, mg/, mgk ) > |S%, 57,555, S, mg)

Approximations




» Matrix now has independent blocks!

Diagonalize

Diagonalize

Diagonalize

Diagonalize

»Zeeman Effect treated as a perturbation . .
Approximations




The Curie Law



» The (empirical) Curie law states:

X:T

» As the temperature drops, the sample becomes more
susceptible to the magnetic field

» Can we work out C?
»Yes! For perfect paramagnets:

2
C = Z’i N,g2S(S + 1) ~ 9—5(5 +1) cm3mol~K
B

The Curie Law




»Rearranging, yT = C
» Therefore if the Curie Law holds, yT vs. T should be constant

» As temperature is lowered we (usually) see deviations from
Curie-like behaviour (this is where the fun happens!)

» A note on units:
» Chemists usually use cm3mol™ 'K (c.g.s. e.m.u.)

» Historically also plot perr =~ 2.828,/ T in units of up

The Curie Law




» A simple S =2 compound with g = 2:
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The Curie Law




Exchange coupling




» When spins are coupled the Curie Law will fail (at some
point)

» The strength of the interaction sets the temperature when
this happens

'\s

XT (cm® mol! K)
-~ =

|4

Exchange coupling




»If ¥T saturates at high temperatures, we call this the
‘uncoupled moment’ (not really uncoupled!!)

» It is the sum of the Curie contributions of each spin
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Exchange coupling




»If ¥T reduces with temperature, dominant antiferromagnetic

»If ¥T increases with temperature, dominant ferromagnetic
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Exchange coupling




» What about X? Ferromagnetic rises

faster
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Low temperatures




» At low temperatures, ¥T can reveal ground spin state
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Low temperatures




» Magnetization also gives information about the ground spin
state

» At the lowest temperature and highest field, magnetization
saturates at:

t— 20 K — 40K — 100K 20.0 K]

M= gs =

S withincreasing |
S=4 temperature!
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Field (T)

Low temperatures




The importance of a model




» We are attempting to model a complicated physical reality
with a toy model

» Remember the simplifications and approximations of the
Spin Hamiltonian approach!

—h?2 )
—V“+VIW=EY
» Always start with the simplest possible model first!

The importance of a model




» When modelling the properties of ANYTHING, always start
and finish with the molecule!

The importance of a model




» Draw a sketch of how you design your model

Cu', cu',

31 >

The importance of a model




» Define the Hamiltonian you will use

ﬁ — _2]1.§1 ‘ 5‘2 +,LlBg (SA]_ + 5‘2) . E
)y

31 >

1
51=52=§

The importance of a model




» Do some toy calculations to understand the what the
parameters in your model do!
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The importance of a model




» WARNING!

» g is very poorly determined by susceptibility measurements!

» This is due to approximate diamagnetic corrections and
sample masses as well as purity

» Must use EPR to determine these accurately!

The importance of a model




» Do some simulations or fits to determine the best
parameters for your model

» May not be unique!
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J1 =—145cm™t
» Look at what the eigenstates are! g =212

Eigenstates (Wavefunction coefficients)

E cm-1 0.0000E+00 0.2900E+03 0.2900E+03 0.2900E+03
mS(l) mS(2)
-0.5 -0.5 1.00000000
-0.5 0.5 0.70710678 0.70710678
0.5 -0.5 -0.70710678 0.70710678
0.5 0.5 1.00000000

Eigenstates (Percentage Composition)

E cm-1 0.0000E+00 0.2900E+03 0.2900E+03 0.2900E+03
mS(l) mS(2)
-0.5 -0.5 100.0000000
-0.5 0.5 50.0000000 50.0000000
0.5 -0.5 50.0000000 50.0000000
0.5 0.5 100.0000000

The importance of a model




J1 =—145cm™t
» Look at what the eigenstates are! g =212

The importance of a model




» Finally come back to the sketch and the molecule and
interpret what your measurements are telling you!

The importance of a model







» Our sketch.....of an imaginary complex...
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Ni'' example




» Effect of g on magnetization
2.0 e
Field (T)

Ni'' example




» Effect of D on magnetization
0.0 0.5 1.0 1.5 2.0 Fiei;S(T) 3.0 3.5 4.0 4.5 5.0

Ni'' example




» Effect of D on susceptibility
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» WARNING! The sign of D is very poorly determined by
magnetization measurements!

Residual Error
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Ni'' example




Single ion vs. cluster D &



» Consider the spin system:

»When coupled, wegetS=0,S=1andS=2
»S = 2 is the ground state if the coupling is ferromagnetic

—

H=-2]8 -5, +up (91-§1 + gzgz) - B

Single ion vs. cluster D




Low fields and temperatures,
» The Zeeman spectrum: looks like S = 2

30

20

Energy (em™

5
Field (T)

Single ion vs. cluster D




» Two ways we could model the behaviour:

—_—

H=-2]S; S, + g (91-§1 + gzgz) - B

~2 1 ~2 1
+d1 (Slz _551(51 + 1)) + dz (SZZ - 552(52 + 1))

_ 1
H=D(SZZ—§S(S+1))

Single ion vs. cluster D




Reasonable parameter ranges




» Unless you know better, g = 2

»For 3d ions, g can vary due to close lying orbitally degenerate
excited states

»Ford!—d* g<?2
»Fordé—d° g>?2

»Don’t go below 1.9 or above 2.3, unless you have
spectroscopic proof!

Reasonable parameter ranges




» For 3d metals, |J| < 50 cm™ (usually, Cu" exception)
» For 4f metals, |J| <2 cm™?

» For 3d metals, |D| < 10 cm™ (usually)
» For isotropic Gd", D is negligible (observable in EPR)
» For other Ln'', CF is a very important perturbation

Reasonable parameter ranges




Error residuals and Unique fits  §



»So what is this ‘R-value’ or ‘residual’?

»In PHI (for example);
: ‘N 2 : N 2
R = Z(Xexpl — Xcalcl) X Z(Mexp] — MCCLlC])
i J

» Only meaningful within one dataset!!
» i.e. for your experimental data

» Fitting Y and M together will have different R values than fitting them
separately!

» Consider experimental uncertainty — don’t just believe the
numbers! Use your eyes to distinguish good from bad fits!

Error residuals and unique fits




» Not always one parameter set!
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Error residuals and unique fits




» To-do list:
» More efficient matrix diagonalization (Sparse, Davidson, Lanczos, etc.)
» Point group symmetry simplifications
» New and efficient EPR approach
» EPR roadmaps
» Frequency-swept EPR
» New minimization algorithms
» True self-consistent mean-field intermolecular interaction

... any other ideas?

New features in PHI




